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Abstract—On today’s Internet, end-user debugging is largely
limited to simple tools such as ping and traceroute,
supplemented by purpose-built services such as bandwidth
measurement, and website uptime monitors. Unfortunately,
these tools do not provide sufficient data to isolate specific
network faults, nor do they give the user results that can
be validated by external entities. Furthermore, since networks
disparately treat measurement packets, as our empirical results
confirm, measurement packets need to be indistinguishable from
data packets. In this paper, we argue for a distributed network
debugging infrastructure and describe Debuglet, a deployable
and incentivized architecture that allows inter-domain network
debugging using real data packets and user-defined code, which
facilitates accurate and flexible measurements of the network
performance experienced by data packets. We implement the
Debuglet system, and demonstrate its feasibility by deploying
it on a network testbed, evaluating its measurement accuracy,
and analyzing its deployment costs.

Index Terms—network debugging, distributed system, remote
code execution, blockchain

I. INTRODUCTION

Internet applications have become mission-critical for
many businesses. As teleconferencing increasingly replaces
business travel, and as collaboration between multiple work-
sites increasingly relies on Internet applications, the Internet
has become critical infrastructure for everyday life. When
encountering Internet outages or reduced performance, users
and technicians alike want to know: which link or system is
responsible? Who can help to resolve the issue?

On today’s Internet, end-user debugging is largely limited
to rudimentary tools such as ping and traceroute,
supplemented by purpose-built services such as bandwidth
measurement, website failure detection, and uptime monitors.
Unfortunately, these tools suffer from three major short-
comings. First, they are either end-to-end [11f], [14], [17],
complicating fault localization, or they are not based on real
data traffic [18]], [32], [34], allowing networks to prefer-
entially treat measurement traffic over regular traffic, such
that their measurements do not accurately reflect the fate of
real data traffic. Second, techniques that require participation
by forwarding routers [27]], [28]], such as traceroute, do
not always get the desired support, or may get replies from
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non-public IP addresses, making fault localization difficult.
Finally, the results of a measurement are not verifiable by
external entities.

In this paper, we propose a distributed network debug-
ging infrastructure, Debuglet, in which Autonomous Systems
(ASes) deploy services intended for network-measurement
applications. The Debuglet executor, distributed at the edge
of ASes, provides a policy-constrained remote code execu-
tion environment. By distributing and executing applications
tailored to the intended network measurement to the ex-
ecutors, endpoints perform real-world data-plane operations
at different vantage points, allowing them to localize the
origins of network failures with high accuracy. Endpoints
pay to run their network debugging applications in these
environments using some form of micro-payments, using
traditional currencies or cryptocurrencies brokered through
their Internet Service Providers (ISP). The output of these
applications can then be certified by the deploying AS,
allowing third parties to verify the measurement results.

Our contributions in this paper are:

« Demonstrating that real-world network performance de-
pends on the type of network traffic being sent, thus
to achieve accurate measurement the packet type of the
probes should match the packet type of the traffic whose
performance is being debugged,

o Designing the distributed Debuglet architecture, allow-
ing programmable and verifiable network measurements
in inter-domain networks, enabling fine-grained network
fault localization, and

o Introducing a marketplace model for purchasing mea-
surement service from remote ISPs, incentivizing the
deployment of the architecture and paving the path to
form an ecosystem for Internet debugging.

II. MOTIVATION

The inadequacy of today’s ICMP-based network measure-
ment tools to reproduce and accurately locate network faults
in federated networks motivates us to design a new system
addressing these problems. This inadequacy stems from the
differential forwarding treatment by routers, i.e, routers’
forwarding decisions do not only rely on the destination of



TABLE I: RTT and drop rate between the specified location
and London. Each measurement consists of 86400 packets,
one per second over a day. Data is expressed in milliseconds.

Loss rate is given in per-thousandths (%o).

Location UDP TCP ICMP Raw IP
mean std mean std mean std mean std
146.01 7.01 158.05 527 14544 3.89 15144 287
Bangalore
0.23 %o lost 1.72 %o lost 0.57 %o lost 0.41 %o lost
N 1475 178 1472 122 1195 051 1536 055
Frankfurt
0.00 %o lost 1.09 %o lost 0.01 %o lost 0.00 %o lost
7394 6.64 7158 6.12 76.08 398 7647 4.02
New York
5.59 %o lost 16.19 %o lost 0.24 %o lost 0.27 % lost
. 13479 1.00 13442 0.70 134.62 0.66 13509 1.71
San Francisco
0.00 %o lost 1.56 %o lost 0.02 %o lost 0.03 % lost
. 176.14 10.04 17695 4.33 181.74 3.00 17898 4.61
Singapore
0.09 %o lost 1.74 % lost 0.06 %o lost 0.03 %o lost
27401 7.79 278.60 5.19 27799 5.15 27844 5.18
Sydney
0.50 %o lost 1.09 %o lost 0.96 %o lost 1.01 % lost
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Fig. 1: New York - London RTT, over 4 hours. The leftmost

packets but also on type, size, and values in the header fields.
We expose this problem through real-world measurements.
We design and carry out experiments demonstrating that the
protocol of data packets can affect the network performance.
Protocols. We conduct experiments on the following proto-
cols:

« UDP packets,
e TCP packets without any special flag, with random
sequence numbers,
o ICMP echo requests,
Custom IP packets with an unassigned protocol number
(201)
Performance Metrics. We consider two network perfor-
mance metrics: round-trip time (RTT) and drop rate.
Experiment Setup. We set up identical virtual machines
(VM) hosted by Digital Ocean in seven locations around
the globe: Bangalore, Frankfurt, London, New York, San
Francisco, Singapore, and Sydney. We measure RTT and drop
rate of considered protocols between the VM in London and
other VMs in the other six locations. To achieve this, we
deploy a client Go application in those six locations, each
of which sends probes to the VM in London in a round-
robin manner, rotating between the considered protocols with
a period of one second and sending one probe packet of that
protocol’s type. The server Go application in London replies
to these probes, and the client collects experienced RTTs
and drop rates based on the received replies. To ensure that
any performance differences are only due to the difference in
protocols, the applications ensure that the total length of each
packet, from the beginning of the layer-3 header, is the same
for all four protocols. We conduct measurements during 24
hours.

Based on our investigation using traceroute, traffic between
these datacenters traverses the public Internet as the cloud
provider does not own a global network connecting all its
data centers; thus, our results represent the performance of
inter-domain networks.

Empirical Results. Table [] summarizes the measurement
results. The results suggest that the network’s forwarding

plot shows latency variations over time, while the four
vertical line plots represent the density function of latency
distribution for each protocol type, logarithmic scale.
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Fig. 2: Frankfurt - London RTT, 24 hours.

behavior differs for different transport protocols. ICMP’s
and raw IP’s RTT demonstrate greater stability compared to
UDP and TCP. For ICMP packets, this phenomenon could
be explained by routers treating them specially, as they are
mainly used for network debugging.

Conversely, UDP demonstrates the highest variation in
measurements. Because it is generally assumed that appli-
cations using UDP can tolerate some packet re-ordering, the
variation may be caused by route diversity, from routers load-
balancing UDP on a more fine-grained basis than per-flow or
per-flowlet, as is typical for TCP flows.

TCP experiences the highest drop rate. One explanation is
that routers deprioritize TCP packets on congested links to
make senders reduce their transmission rate, since UDP may
not respond to loss as significantly.

Figure [I] shows a 4-hour window of the 24-hour RTT
measurement between London and New York. UDP and TCP
consistently experience lower RTT than ICMP and raw IP.
However, in some periods, a sudden increase of about 5ms
is observable, signaling a change in forwarding behavior,
e.g., route changes. Figure [2| plots 24-hour results between
London and Frankfurt. UDP results show four clearly visible
clusters, which we hypothesize as representing four different
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Fig. 3: Bangalore - London RTT, 24 hours.

routes on which UDP traffic is forwarded. Another interest-
ing observation is that for several hours the RTT of UDP
and raw IP packets show a noticeable increase that is not
reflected in ICMP nor TCP. Figure [3] shows that UDP’s RTT
between Bangalore and London is distributed over a 30 ms
range, almost randomly. Other measures, even though being
consistent for relatively short periods of time, vary several
times during a day, without any clear correlation.

These results indicate that measurement packets and data
packets of different types can receive differing treatment by
networks. This differing treatment means that performance
issues for a TCP application are best diagnosed using TCP
packets, rather than using ICMP or UDP packets. Although
this conclusion is driven from ping measurements, it also
holds for traceroute, which also uses ICMP, making tracer-
oute packets distinguishable from data packets. However, it is
possible to perform traceroute with TCP or UDP packets, i.e.,
encapsulated in IP packets with increasing TTL. However,
regardless of the protocol used, there are two important
limitations with traceroute: (1) responding with ICMP TTL
exceeded message is disabled or rate-limited on many routers,
and (2) routers responding with ICMP TTL exceeded mes-
sage process such messages on the slow path, while data
packets are processed in the fast path, resulting in different
performance experienced by data and measurement packets.

IIT. DESIGN PRINCIPLES

The Debuglet architecture aims to enable network adminis-
trators to locate network failures in an inter-domain network.
Inspired by the motivation presented in Section we lay
down the principles we pursue in the design of Debuglet.
Segment-by-Segment Network Measurements. To accu-
rately locate network failures, it is necessary to perform
debugging per network segment. For instance, if a network
failure occurs on an inter-domain link, the optimal source and
destination locations for measurement packets for network
debugging would be the edges of consecutive ASes. Through
this approach, network inspection is performed individually
for specific inter-domain or intra-AS links, isolating each
measurement to identify network failures independently.

Fig. 4: Forwarding devices may handle packets differently
based on their type, resulting in different forwarding deci-
sions.

Reproducibility. As demonstrated earlier, the application
data packet type affects the forwarding decision of on-path
routers. For example, as shown in Figure [ probing packets
may be assigned to a priority queue over regular data packets
and can be transmitted through more stable links. Thus,
forwarding delays can vary based on the protocol, size, and
header field values. Additionally, changes in the destination
address—and sometimes also the source address—can in-
fluence the decision of forwarding interfaces. Therefore, to
ensure a consistent network experience, replicating the same
type of application data packets and transmission through the
same path (i.e., the same interface port) is required.
Enabling Unidirectional Measurements. It is necessary to
allow unidirectional fault localization on the Internet because
of two reasons: (1) Internet paths may not be symmetric, and
(2) load distribution on different directions of each link on
a path can be different, resulting in different performance
in forward and backward directions, e.g., one link can be
congested in the forward direction and uncongested on the
backward direction, resulting in more queuing delay and drop
rate on the forward direction. To distinguish faults on the
forward path from the ones on the backward path, Debuglet
should provide the ability to measure the performance of each
direction of the path.

Transferability and Verifiability of Measurement Results.
It might be beneficial for networks to reuse the measurement
results so that no other domains need to perform similar
measurements to locate the same network fault, scaling
down the total number of probes sent and ultimately saving
resources and costs for network debugging. Therefore, the
Debuglet architecture should support publishing the results
of measurements if desired. The main challenge in enabling
this capability is the verifiability of measurement results: how
can a domain trust that the results published by other end
domains provide a realistic picture of the measured segment
in the network? In other words, how can the system provide
a guarantee that no domain can deliberately provide an
ungrounded worse or better picture of an ISP’s performance
by publishing fake measurement results or by cherry-picking



the worst or best real measurements and just publishing those
results? Such behavior can be motivated by domains trying
to damage the reputation of other domains, or claiming a
refund in case of a service level agreement.

A. Requirements

We describe the prerequisites we need to follow the
principles of designing Debuglet.
Remote Code Execution (RCE). To be able to reproduce
data packets close to faults in an inter-domain network, where
faults can occur out of end domain’s administration, it is
necessary that end domains execute code at remote domains
near network faults. Furthermore, RCE is necessary for
enabling unidirectional network measurements as it facilitates
the programmability of debugging applications, providing
control over both sender and receiver sides of measurements.
Path Awareness. Control over forwarding paths is one of the
design principles of Debuglet which can only be achieved
through path-aware networking [30]. Path-aware network ar-
chitectures provide endpoints with information about network
paths to any destination and allow them to select paths based
on their needs. Therefore, to achieve control over forwarding
paths, Debuglet relies on path-aware architectures such as
SCION [12] and segment routing [[13]]. The main benefit of
leveraging these two specific architectures is that they provide
path control at a fine granularity — in the case of SCION the
ingress and the egress links of each AS on the path to the
destination.

IV. THE DEBUGLET ARCHITECTURE

A. Overview

The Debuglet architecture consists of a data plane that
enables running custom network measurements at precise
locations in a public inter-domain network and a control
plane that enables the scheduling of measurements and verifi-
able publishing of the results. Every measurement performed
using Debuglet requires two distinct executors at two points
of a path and two pieces of application: the Debuglet client
that starts measurements and Debuglet server that receives
measurement packets, which are deployed by the initiator as
shown Figure [3

Network measurement in Debuglet architecture is a five-
step process:

(1) Upon experiencing network anomalies, network end-
points request debugging from their ISP.

(2) The ISP generates Debuglet applications (or just Debu-
glets) based on the reported issue, and requests the ASes
with executor instances close to the points of interest on
the forwarding path to run the Debuglets.

(3) The ASes who accept the request deploy the Debuglet
on the agreed executor instances.

(4) Executors run the Debuglets, and collect measurements.

(5) Executors report the results back to the requesting AS.
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Fig. 5: High-level overview of Debuglet.

B. Data Plane

The data plane of the Debuglet architecture has two build-

ing blocks: (1) Debuglets, which are pieces of application
that produce and send data packets to measure network per-
formance at selected locations, and (2) Debuglet executors,
which are machines deployed at ASes to execute Debuglets
on behalf of end domains, collect the results, and submit
them to the control plane.
Debuglet Executor. In the Debuglet’s distributed network-
debugging infrastructure, Debuglet executors are small-scale
cloud services intended for network measurement applica-
tions. To allow the safe execution of unverified code from
other ASes, the received application must be executed in
a sandboxed environment that provides memory safety, and
finishes in a bounded number of instructions. Although
virtual machines (VMs) can achieve these properties, sig-
nificant setup time and effort of VMs inhibit agile network
debugging. To overcome this, we build our architecture using
WebAssembly (WA) [9], [16] to run Debugletﬂ

By default, a WA application operates within an isolated
environment and lacks direct communication capabilities
with the external world, except for input parameters and re-
turn values. The executor therefore provides these bytecodes
with (1) buffers from/to which WA applications can read or
write raw application data, and (2) an API through which WA
applications can request sending or receiving packets with
a variety of transport, network and link layer protocols (if
applicable). Therefore, WA applications have the freedom to
choose the application layer protocol, content, and data rate.
To facilitate network transmissions, dedicated memory re-
gions are designated to serve as buffers. These buffers are as-
signed to specific namespaces, such as udp_send_buffer
or tcp_receive_buffer, making them easily accessible
as global variables. Another buffer is also allocated to store

ISome alternatives are also available, e.g., Extended Berkely Packet Filter
(eBPF) [1], enabling the execution of customized code in the kernel, or
uBPF [7], a user-space implementation of the same concept, or the Dandelion
system [19].



Fig. 6: Executors are co-located with all border routers of
ASes, achieving network debugging in an inter-domain link
granularity.

the result of the execution. The output buffer serves as
the location where a WA bytecode stores the results of
network measurements. The output can then be certified by
the deploying AS of the executor, allowing third parties to
verify the measurement results.

Debuglets. A Debuglet is compiled as WA bytecode that
provides the run_debuglet function as the entry point,
serving as a main function in a typical program. The byte-
code can perform arbitrary computations until its execution
concludes, after which it must return a result.

In order to successfully execute a Debuglet, it is accompa-
nied by a manifest upon submission of the application. The
manifest is evaluated by the remote AS prior to execution.
This manifest contains the following information:

« Resource requirements, including CPU time, execution
duration, peak memory usage, and the number of pack-
ets sent and received,

e The list of addresses desired to be contacted, and

« Specific capabilities required for execution.

Location of Executors. The location of executors in each
AS is a crucial part of the design of Debuglet architecture.
Network operators need to know where they should locate
Debuglet executors for two reasons: (1) resource provision-
ing, and (2) ensuring that Debuglet measurements do not
disclose secret internal network topology. Furthermore, the
locations of executors in each AS determine the achievable
accuracy of fault localization. Thus, identifying the location
of executors requires the identification of the desired fault-
localization accuracy.

We consider co-locating executors with border routers—
a router connecting an AS to a neighboring AS—meaning
that an AS deploys executors preferentially at its borders
(other alternative deployment scenarios are discussed in Sec-
tion[VI-G). This is because in inter-domain fault localization,
end domains are interested in finding which ASes or inter-
domain links on a path are responsible for a network failure.

Figure [0] illustrates how such a deployment model enables
distinguishing faults within an AS and on inter-domain links.
Consider if an end domain has suspected that the segment
between the egress border router of AS #1 and the ingress
border router of AS #3 is responsible for the performance
degradation, suggesting that the fault can occur (1) between
AS #1 and #2, (2) within AS #2, or (3) between AS #2 and
#3. Assuming that all ASes have deployed one executor co-

located with each of their border routers, a remote domain

can validate the mentioned three hypotheses by pursuing the

following procedure:

(1) Deploying a pair of Debuglets at executors A and D
that run measurements to validate that the segment (red)
between the egress border router of AS #1 and the
ingress border router of AS #3 is in fact faulty, and
measuring the performance on this segment,

(2) Deploying a pair of Debuglets at executors A and B
that run measurements to evaluate the performance of
the link between ASes #1 and #2 (blue),

(3) Deploying a pair of Debuglets at executors C and D
that run measurements to evaluate the performance of
the link between ASes #2 and #3 (green),

(4) Deriving the performance of the part of path within
AS #2 based on the measurements collected in the last
three steps for the whole segment and each of the inter-
domain links connecting to AS #2.

Note that we intentionally do not measure the performance
of AS #2 by deploying a pair of Debuglets at executors B
and C directly inside the target AS, because in that case the
traffic would be intra-domain traffic within AS #2, which
might be treated differently from the original inter-domain
traffic coming from AS #1 and going to AS #3, hindering
the accurate reproduction of the original forwarding behavior.

C. Control Plane

The responsibility of the Debuglet control plane is to (1)
provide a public list of Debuglet executors, (2) schedule
Debuglet executions such that it enables the synchronized
execution of two applications in two independent ISPs in
a Internet-scale environment where only a limited number
of requests can be accommodated at each executor due to
finite resources, and (3) allow ISPs to publish the results of
Debuglet executions publicly in a verifiable manner, so that
other entities cannot alter or create fake results. Furthermore,
the control plane can provide an interface between the
initiators of Debuglet applications and the executors, through
which they can exchange application and results. In this
section, we present a centralized design, while we sketch
a possible decentralized alternative design in Section
Blockchain-based Marketplace. As an instantiation of such
a control plane, we propose a marketplace model for Debu-
glet measurements through which domains trade time slots
for measurements, exchange Debuglet applications, and can
publish measurement results. This model allows for simple
scheduling of measurements without requiring a complex
algorithm: an initiator can purchase two measurement slots
for the same timespan at the two executors of its interest,
and publish the bytecode for each purchased slot. The use
of blockchains for implementing such a marketplace ensures
verifiable publishing of results: All transaction history for the
results published by the executors is traced in the blockchain,
i.e., none of the Debuglet participants can modify the results
without others noticing. Using blockchains also allows for
integrating a payment method with the marketplace.
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Blockchain
N-1 N N+1

. e——{ Prevhash | $——{ Prevhash | $——{ Prevhash | $—— -

[Datahash | [Datahash |

[Datahash_|
T
[ Transactions | [ Transactions |

[Transactions |

ResultReady

AS2

AS1

(c) After running measurements, executors
report results and retrieve the payment from
the smart contract.

Fig. 7: Basic Debuglet execution model with a smart contract.

Integrating with Smart Contract. We design such a mar-
ketplace as a smart contract. Thus, all executors and initiators
join a blockchain as nodes.

The smart contract defines application and results as
objects: An application object contains an object ID, a
string containing the actual WA bytecode, and the tokens
that the initiator embeds to be transferred to the executor
upon completion of the Debuglet execution. A result object
contains its object ID and a string containing the actual
results.

The smart contract defines the following data structures as
its state to accomplish its task as a measurement marketplace:

« ExecutorAddressMap: A map indexed by the concate-
nation of the AS number and inter-domain interface?]
identifier (< AS,intf >) associated with executors to
their node’s address. The map enables deploying Debu-
glet applications to the intended executors. If multiple
physical executors exist for a < AS,intf >, the smart
contract does not distinguish between them. Instead, it
is the task of their administrating domain to coordinate
them.

« ExecutionSlotsMap: A map indexed by < AS,intf >
to the sorted list of available non-overlapping time slots
for the corresponding executor. Similar to the cloud’s
TaaS model, ASes provide the executors’ time slots
from which initiators can choose. Each time slot is
associated with the following five tuples: (1) the number
of available CPU cores, (2) available memory capacity,
(3) assigned network bandwidth, (4) start and end time
in Unix UTC time, and (5) the price for the slot.

« ApplicationsMap: A map indexed by the concatenation
of the Debuglet client’s AS number and interface ID,
the Debuglet server’s AS number and interface ID, and
the time slot (< AS.,intf., ASs,intfs, tstart, tend >)

2An inter-domain interface specifies either end of an inter-domain link
connecting two neighboring ASes.

to the list of vector of Debuglet applications associated
with the tuple, pointing to the applications stored in the
blockchain.

o ResultsMap: A map indexed by the object IDs of
Debuglet applications to the results struct.

Figure [/| shows the life cycle of Debuglet for a measure-

ment. The smart contract defines the following functions that
are called by different parties.
Bootstrapping. An executor calls RegisterExecutor()
to register itself at the smart contract. It provides its AS
number and interface ID as arguments to the function. This
function adds the mapping between the AS and interface ID
of the caller and its address to ExecutorAddressMap.

Later, via RegisterTimeSlot(), executors register

their available time slots by provide their AS number, in-
terface ID, and the list of time slots (a time slot is defined
by a S-tuple explained in the ExecutionSlotsMap in this
section). The function call first checks that the provided AS
number and interface ID are, in fact, associated with the
calling executor based on ExecutorAddressMap and updates
the ExecutionSlotsMap.
Initiating Network Measurements. An initiator calls
LookupSlot() to first look for available slots for its desired
measurements. It provides as an argument the AS number and
interface ID of the executor running the client application
and the same information for the server side, the required
number of cores, amount of memory, and bandwidth for
both client and server applications. The function checks by
looking up the ExecutionSlotsMap, when the first available
time slot that both to-be-involved executors can accommodate
the measurement would be, and how many execution slots
need to be purchased at each executor. The function returns
the price that needs to be paid and the first possible time slot
to the initiator.

To buy a slot, the initiator calls PurchaseSlot(). The
initiator provides the following information as the arguments



to the function: the client’s and server’s AS and interface
IDs, the time slot’s 5-tuple, the number of execution slots
it desires to purchase from each of the executors, the string
representations of the WA bytecodes of the client and server,
and the cryptocurrency tokens required for running each of
the client and the server application on each executor. The
function first verifies that the embedded tokens suffice for
the specified execution slots. Then, it creates two applica-
tion objects, embeds the tokes in them and adds them to
ApplicationsMap, and emits events to notify the executors.
The executors, which must have subscribed to the event
with arguments containing their AS number and interface ID,
retrieve the applications and schedule them for the requested
time slot.

Reporting Results. An executor calls ResultReady() after
it has executed the Debuglet. The executor provides the object
ID of the executed Debuglet and the string representation
of the results as the arguments. The function transfers the
embedded tokens in the application object to the executor’s
address. It also creates a result object, in which it embeds
the result string, and inserts it into the ResultsMap. Finally,
it emits an event to notify the initiator, which should have
subscribed to notifications with the object ID of its applica-
tion, of the readiness of the result.

LookupResult() allows any node to search for the result
of any measurement. The function looks up ResultsMap for
measurements and returns the list of object IDs of results
together with the time they were executed and the object ID
of their associated applications. Note that an initiator may
want to keep the results private by encrypting the results in
the client and server applications using a cryptographic key
embedded in the applications. In that case, the results are not
readable by third parties.

V. IMPLEMENTATION AND EVALUATION
A. Implementation

We implement a proof-of-concept of all components of the
Debuglet architecture, i.e., executors, sample Debuglet server
and client application, and the smart contract to control all
Debuglet procedures. We implement each executor as a Go
application using Wasmer [8] WA [9]] runtime to run Debuglet
WA bytecodes. We write Debuglet client and servers as
Rust applications and compile them to WA bytecodes. We
write the smart contract in Move language [2] and deploy
it on a local instance of the Sui blockchain, a modern
blockchain capable of thousands of transactions per second,
sub-second finality, and low transaction cost. We deploy our
implementation in the SCIONLab [4]], [20] testbed, a global
testbed for the SCION Internet architecture.

B. Evaluation Results

We evaluate the feasibility and practicality of the Debuglet
architecture by evaluating three important aspects of its
design, i.e., (1) the impact on the accuracy of running WA
bytecode for measurements, (2) the delay-to-measurement

introduced by the control plane design, and (3) the cost of
using blockchains as the control plane of the system.

The Impact of Running WA on Measurement Accuracy.
To this end, we developed:

« Two native Go applications, one acting as a UDP client,
sending packets at a steady rate, and the other as a UDP
echo server, and

« Two WA Debuglets with exactly the same functionalities
as the native Go applications mentioned above.

We then performed four experiments to quantify the delay
added by using WA.

(1) Debuglet to Debuglet (D2D), where both the client and
server are Debuglets,

(2) Application to Debuglet (A2D), where the client is a
native application, and the server is a Debuglet.

(3) Debuglet to Application (D2A), where the client is a
Debuglet, and the server is a native application.

(4) Application to Application (A2A), where both client and
server are native Go applications.

We ran these experiments simultaneously for one day,
between virtual machines located in London and New York,
sending one packet per second for each experiment. In total,
we collected 4 - 86400 data points.

Figure [§| illustrates the results of these measurements.
According to this figure, D2D measurements have a mean
latency of 75.12 ms while A2A measurements have a mean
latency of 74.81 ms. Therefore, WA execution adds a delay
of approximately 300 microseconds, which is attributable to
the additional operations for switching between Go and WA.
D2A and A2D measurements fall in between, with latencies
of 75.01 ms and 74.88 ms, respectively. Importantly, the fig-
ure suggests that WA execution does introduce some noise to
the measurements, but an almost constant delay, which can be
offset from the results if the execution environment is known,
thus enabling extraction of the ground truth measurement
results.

In terms of packet loss, our measurements show negligible
difference between measurements: D2D, 1.68% of the pack-
ets are lost, while A2D experiences 1.38% loss, D2A 1.66%,
and A2A 1.71%.

The Delay-to-measurement. The delay-to-measurement is
an important aspect of the design and implementation as it
is a determining factor in how fast the system can locate
faults. Importantly, if faults are short and transient, long
delay-to-measurement can cause missing the fault. Delay-
to-measurement of Debuglet comprises three delays: (1) the
blockchain operations delay, (2) the waiting time until the
scheduled time slot, and (3) the WA environment’s setup
time. Regarding the first delay, modern blockchains like Sui
achieve very high transaction throughput (more than 100,000
per second) and very low finality latency (less than half
a second) per transaction [5]]. In our implementation, two
transactions are on the critical path of running a measure-
ment, i.e., calling LookupSlot() and PurchaseSlot(),
which are negligible. The second delay, which contributes to
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Fig. 8: Latency measurements using different Debuglet and application combinations. Each dot represents a measurement.

the majority of delay-to-measurement, can only be evaluated
in an operation as it depends on the demand for measure-
ments, the available resources for executors in ISPs, and
how often faults occur in the network. Therefore, despite
its determining effect, this delay is neither a matter of design
nor the implementation of Debuglet. However, because of the
marketplace-based TaaS model we propose in this work for
executing Debuglet application, we expect ISPs to dedicate
resources to executors proportionally to the demand for
running application, resulting in enough resources available
for running measurements, and thus, limited wait time for
measurements. We evaluate the third type of delay, i.e.,
execution environment setup time, for different WA byte-
codes, and observe an almost constant setup time of around
10 ms across all executions. To conclude, the design and
implementation of Debuglet data and control planes allow
for a sub-second reaction to an experienced fault.

Blockchain Costs. Blockchains charge nodes for transactions
they perform and the data they store on the blockchain. This
means that deploying the Debuglet infrastructure introduces
additional costs both to initiators and executors. We evaluate
these costs for submitting and storing a Debuglet application
using the Sui blockchain. The cost for results has a similar
pattern, i.e., a constant cost and a storage cost proportional
to required storage. Table [lI| shows the price (in SUI) for
submitting and storing applications with different sizes on the
Sui blockchain (the main net). The cost can be significantly
lowered by storing applications or results off-chain and only
storing a link to the stored data and a hash of data on the
chain, so that the data can be verified against the on-chain
hash. Consequently, keeping only the hashes of the data and

TABLE II: Cost of submitting Debuglet application to the
Sui blockchain in SUI for different application sizes. Each
SUI is equivalent to $0.94 as of May 14th, 2024 [6]]. The
storage rebate is refunded after the stored data is freed up.

application size | Total Cost (in SUI) | Storage Rebate (in SUI)

0B 0.01369 0.00430
100 B 0.01585 0.00632
1 kB 0.03527 0.02456
5kB 0.12160 0.10562
10 kB 0.22953 0.20696

code on-chain, the Sui transaction fees amount to about 1
cent, which is sufficiently low for most use cases. If desired,
a reduction in transaction costs can be achieved by using
optimizations to perform micropayments on blockchains [24].

VI. DISCUSSION
A. Alternative Channel for Discovering Executors

A logically centralized control plane for the Debuglet
system, such as the marketplace model proposed in Sec-
tion integrates executor discovery with code and result
exchange, fine-grained scheduling of executions, verifiable
result publication, and payment for the provided service.
However, such a model entails a single point of failure,
i.e., the marketplace, and assumes that all ISPs agree on
what entity should operate the marketplace. To address these
issues, we present an alternative decentralized approach to
discover executors without relying on a centralized controller.
In the decentralized approach, ISPs advertise the address
and location of their executors as route metadata encoded
in routing messages they originate. Thus, other domains
learn about the executors through the inter-domain routing



protocol, which is a distributed protocol executed by all
domains. An initiator of Debuglet applications uses these
addresses to directly contact the executors. They need to
bilaterally negotiate the scheduling and the price of the
execution and the method of payment. The initiator sends
the applications directly to the executors, and upon the end
of the execution, the executors return the results directly back
to the initiator. As the results are not publicized by the trusted
marketplace, they would not be publicly verifiable. Both the
centralized and the decentralized approach can coexist, and
we anticipate that both would be used catering to different
application scenarios.

B. Incremental Deployment

Though full deployment provides the best picture of how
each AS impacts path performance of real network packets,
partial deployments allow direct measurement between any
two deploying ASes, and between a deploying AS and either
endpoint. For applications such as service-level agreement
(SLA) enforcement, a small deployment of Debuglet services
at the ISP, or, ideally, at neighboring ASes, will allow
for verifiable measurements of the performance between a
subscriber (as measured at the Customer Premises Equip-
ment, for example) and their ISP and its providers. Further
deployment of Debuglet services would help ISPs prove their
innocence.

An AS that knows it contributes to poor performance may
be disincentivized from deploying Debuglet services as it
tries to conceal its contribution to poor network performance;
however, increased deployment of Debuglet services at other
ASes will make it increasingly clear where the bottleneck
lies. For example, a Tier 3 ISP with poor performance will be
exposed because its customers suffer poor performance that
cannot be isolated to its providers. Also, a Tier 1 or Tier 2
ISP, despite not deploying Debuglet services, will still be on
the routing path for many Debuglet-to-Debuglet or Debuglet-
to-client paths, and its contribution to network bottlenecks
will become more clear as its neighbors (both upstream and
downstream) deploy Debuglet services. Therefore, though an
AS can initially hide its poor performance by not deploying
Debuglet services, as the system gains adoption, that AS will
be increasingly exposed over time.

At the same time, well-performing ASes will seek to pro-
vide Debuglet services, as they will provide three important
benefits: (i) they will help validate the performance of that
AS’ network, (ii) they will help the AS’ customers verify the
actual bottlenecks and improve customer support, and (iii)
they will obtain additional revenue from running Debuglets.

C. Economic Impact

Debuglet applications, which are generally short-lived and
require relatively little resources, should be fairly inexpensive
to run. Considering cloud computing prices as a baseline,
running a Debuglet can cost less than 100 millicents. When
Debuglet application demand is low, deploying ISPs can
either deploy virtual machines on computers already running

for other purposes, such as network management, or by
deploying a low-cost and low-power Single Board Computer,
such as a Raspberry Pi 4, which draws between 4-6 W of
power, or less than 53 kWh each year.

The low cost, both of deploying Debuglet services, and
of executing Debuglet applications, can generate significant
value for ISPs. For example, a Customer Premises Equipment
(CPE) that can interact with Debuglets in firmware can
help technical support isolate a customer’s connectivity or
performance issues. For example, the system may determine
that the issues are entirely contained within the home net-
work, where support personnel can suggest resetting the WiFi
router, or plugging directly into the CPE. In other cases, the
ISP may be able to determine that the network issues arise
outside of the ISP’s network, for example on the downstream
path toward a particular service. Because technical support
staffing is a significant cost to ISPs, even minor productivity
improvements to their workflow can provide significant Re-
turn on Investment for amounts spent on deploying Debuglet
services or for executing Debuglet applications.

D. Wise Selection of Debuglet Executions by Initiators

Fast and efficient fault localization in Debuglet demands a
strategic selection of executors. This choice profoundly im-
pacts time-to-locate, executor load, and measurement costs.
For example, consider a path over 10 consecutive ASes with
a fault in the last inter-domain link. Running a series of
consecutive measurements from the first to the last AS can
impose a long time-to-locate and high cost. Simultaneously
examining all the links may not address cost concerns.

In a general case without prior knowledge regarding the
fault, a binary search offers a cost- and time-effective solu-
tion. Initial measurements from the path’s midpoint to each
end domain may reveal the faulty half, repeating until all
faults are located. Nevertheless, the responsibility lies with
initiators to choose the selection strategy, relying on educated
initial guesses, historical data, and potentially leveraging
machine learning for informed decisions. We envision in-
teresting research to devise smart approaches for different
circumstances, and leave them for future work.

E. ISPs’ Effort to Hide their Network Faults

ISPs may aim to hide faults from Debuglet measurements
to protect their reputation and revenue, e.g., refund claims for
SLA violations. They may attempt this by prioritizing packets
to/from Debuglet executors or manipulating measurement
results pre-submission to the blockchain. We argue that both
cases are either impractical or costly. In the first case, tracking
all the executors’ addresses and prioritizing their packets in
forwarding devices is challenging. A feasible attack is to
prioritize packets from the prefixes of interest, but can be
easily cross-validated by running measurements from diverse
network vantage points. Similarly, the second case can also
be easily detected by running multiple measurements and
cross-checking the results.



F. Age of Information

For immediate network diagnostics, results that are more
than a few seconds old may no longer be of use. However,
historical information can still be useful in some cases. For
example, given multiple measurements a common network
diagnostic (e.g., latency and loss rate of TCP packets) over
a fixed path, the trend in measured results over time might
help identify the time at which the path started experiencing
performance degradation, as well as the possible location
of that degradation. Thus, it would be beneficial for sev-
eral applications if network measurements were retained for
a period between a week and several months. However,
such archiving does not necessarily need to be kept on-
chain; instead, blockchain explorers or network information
monitoring sites could retain measurements that are still
potentially useful, and the hash of measurements would be
stored on the chain for verifiability purposes.

G. Alternative Executor Locations

We now review other potential scenarios of executor de-
ployment that ASes can consider.
Arbitrary Locations in each AS. Deploying Debuglet
executors at arbitrary locations within each AS introduces
challenges in fault localization accuracy. In scenarios where
executors are not necessarily on the original data forwarding
path, false positives and negatives can occur. Furthermore,
arbitrarily located executors struggle to provide fine-grained
fault localization between consecutive ASes, unable to distin-
guish network failures in the preceding AS, the inter-domain
link, or the succeeding AS. This lack of precision may
render measurements inconclusive. Additionally, deploying
executors within a network poses a security risk, potentially
using Debuglet infrastructure for unveiling internal topology,
routing policy, and traffic engineering rules.
Co-location with Every Router in the AS. Deploying at
least one executor on each router within an AS offers poten-
tial advantages in minimizing false positives and negatives
compared to the arbitrary model. Here, end domains can
strategically select an executor on the forwarding path for
measurements, enhancing the accuracy of fault localization.
However, this model comes with drawbacks. First, it entails a
substantial violation of ASes privacy, demanding the explicit
disclosure of internal topology and routing policies. Addi-
tionally, it provides fault information at a granularity finer
than necessary, pinpointing vulnerable points and bottlenecks
with high accuracy, thereby exposing the AS to targeted at-
tacks. Moreover, it demands extensive resource requirement,
rendering it impractical for real-world implementation.

VII. RELATED WORK

In-band network telemetry (INT) [29] is a promising and
innovative network telemetry approach to monitor network
performance and localize faults with high accuracy and in
real-time. INT accomplishes this goal by using packets of
the original data flow to collect information about network
performance. This is done by every router on the forwarding

path, adding telemetry information to the header of every data
packet. The added information can include but is not limited
to timestamps of when the packet arrives at a router, when it
leaves a router, and what the queue length and queue waiting
times are. The last router on the path collects this information
and sends it to a centralized controller for further analysis.
Nonetheless, INT is typically applied for intra-domain fault
localization. Applying INT to public inter-domain scenarios
would face challenges: (1) dependency on the destination
domain’s support for collecting and forwarding measure-
ments to a (remote) central controller, (2) potential packet
prioritization by domains with INT headers to hide their
faults, and (3) lack of control by on-path ASes over the rate
of INT which leads to increased load during network faults.

RIPE Atlas [3] is a vast Internet measurement infras-
tructure with probes distributed across the globe, offering
real-time insights into Internet dynamics. Users earn points
by deploying and running probes, and use the points to
conduct network measurements. Besides a default set of
pre-programmed measurements, users can also schedule cus-
tomized measurements. Although Debuglet shares the foun-
dational principle of running customized measurements from
various vantage points, it seeks different goals. While RIPE
Atlas aims for a comprehensive understanding of the Internet,
Debuglet focuses on providing domains an efficient tool for
pinpointing inter-domain network faults. Debuglet deploys
executors at domain borders, facilitating fine-grained fault
localization, diverging from (often) home-based deployment
of RIPE Atlas probes. Nonetheless, through running mea-
surements between the RIPE Atlas probes and the Debuglet
executors, both architectures can be mutually beneficial.

WTF [26] is a status-reporting and fault-localization mech-
anism that collects health bits and uses them to localize faults
using heuristics or machine learning. WTF can combine with
a tracing mechanism that gathers relevant health-bit histories
for fault-localization. Debuglet differs in that they do not
rely on other applications (or other instances of the same
application) to reliably report health status; instead, they use
active measurement over sub-paths to establish ground-truth
about network conditions.

NetQuery [25]] takes an AS’ knowledge and measurements
and makes them available to applications through a sani-
tizer that removes sensitive topology information. NetQuery’s
measurements are taken using Trusted Computing, which
prevents an AS from sending false measurements to appli-
cations. Debuglet can adopt NetQuery’s sanitizer, but differs
in that they allow remote applications to conduct their own
measurements, constructing arbitrary probing packets, while
incentivizing deployment through micropayments.

iPlane [22] uses an overlay network built on top of
PlanetLab to perform periodic distributed measurements of
loss rate, capacity, and available bandwidth, and from these
results predict network performance. By contrast, Debuglet
is deployed inside the network, allowing for direct measure-
ments of path components rather than inferring them from



overlay measurements. Debuglet also provides a different,
externally-verifiable mechanism for distributing the results
of these measurements.

Network monitoring and debugging has been explored in
numerous previous papers, including systems that use infor-
mation from end-hosts [[10], [[15], [33], and information from
the infrastructure [21]], [23], [31]. Many of these systems
include localization schemes that would work in a synergistic
manner with Debuglet.

VIII. CONCLUSION

Because different types of traffic experience the net-
work differently, we argue for a distributed network debug-
ging infrastructure, Debuglet, to address the shortcomings
of purely end-to-end debugging systems. By compensating
ASes for hosting Debuglet executors in their network, we
remove many usage-based attack vectors, and by retaining
results within a blockchain, we allow users to prove their
performance to third parties and allow users to explore
performance trends. Because our design is based on smart
contracts, both payment and result logging can be enforced
through code rather than trust. Debuglet does not aim to re-
place existing network debugging infrastructure; rather, build
on previously proposed mechanisms and provide data points
that were so far difficult to obtain. These data points can be
combined through the use of fault localization algorithms to
provide a more fine-grained and robust view of the network.
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