
Protecting Critical Inter-Domain Communication through
Flyover Reservations

Marc Wyss

ETH Zurich

marc.wyss@inf.ethz.ch

Giacomo Giuliari

ETH Zurich

giacomog@inf.ethz.ch

Jonas Mohler

ETH Zurich

jonas@mohlers.ch

Adrian Perrig

ETH Zurich

adrian.perrig@inf.ethz.ch

ABSTRACT
To protect against naturally occurring or adversely induced conges-

tion in the Internet, we propose the concept of flyover reservations,

a fundamentally new approach for addressing the availability de-

mands of critical low-volume applications. In contrast to path-based

reservation systems, flyovers are fine-grained “hop-based” band-

width reservations on the level of individual autonomous systems.

We demonstrate the scalability of this approach experimentally

through simulations on large graphs. Moreover, we bring the fly-

overs’ potential to full fruition by introducing Helia, a protocol for

secure flyover reservation setup and data transmission. We eval-

uate Helia’s performance based on an implementation in DPDK,

demonstrating authentication and forwarding of reservation traffic

at 160Gbps. Our security analysis shows that Helia can resist a

large variety of powerful attacks against reservation admission and

traffic forwarding. Despite its simplicity, Helia outperforms current

state-of-the-art reservation systems in many key metrics.

1 INTRODUCTION
Given the lack of delivery guarantees for traffic traversing the Inter-

net, companies requiring high availability are forced to turn to other

more expensive networked services. ISPs provide high-uptime con-

nectivity services to their customer’s critical applications—financial

services, command and control, and others—for a hefty premium.

These advanced services take the form of end-to-end bandwidth

reservations, e.g., MPLS tunnels, where a certain amount of band-

width is exclusively allocated for the communication between the

endpoints. Traffic is then shielded from external congestion even

in the case of denial of service (DoS) attacks. However, such solu-

tions are inflexible and expensive, as they require a single entity to

manage the whole infrastructure between the endpoints [1]. In an

effort to achieve the benefits of bandwidth reservations at lower

cost, and for a larger fraction of traffic, recent work proposed sys-

tems that enable inter-domain bandwidth reservations [2, 3]. The

protocols thus developed reserve bandwidth for individual traffic

sources across autonomous systems (ASes, the networks forming

the Internet), on the whole communication path to the destina-

tions. Reservation traffic is cryptographically authenticated and

forwarded with priority, protecting it from congestion.

In this paper, we present a radically new design for inter-domain

bandwidth reservations. Instead of reserving bandwidth on an en-

tire path as in previous systems, sources can reserve bandwidth

This is the author’s version of the work, the definitive version of record was published in

CCS ’22, and is accessible as follows.

2022. ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00

https://doi.org/10.1145/3548606.3560582

for single AS hops. Sources can compose these “hop” reservations—

which we call flyovers
1
—to create end-to-end–protected paths

across the Internet. This simple construction has two major con-

sequences. First, it simplifies the reservation admission and ac-

counting. Flyover reservations are two-party contracts between the

source and the remote AS (the flyover provider), and can thus avoid

the complex setup procedure that, in previous systems, requires

the active involvement of all on-path ASes. Second, flyovers allow

a more effective use of resources, since sources have freedom in the

allocation of flyover bandwidth to flows. In a path-based approach,

the reservation is tied to the whole path, and bandwidth is wasted

if the flow terminates before the reservation expires. With flyovers,

sources can allocate bandwidth to concurrent flows sharing parts of

a path, reducing the waste. In essence, the simplicity and flexibility of

flyovers enables more efficient bandwidth reservation protocols, that

are then also more impervious to resource-exhaustion DoS attacks.

We back this claim by designing and implementing Helia, a

fully fledged inter-domain bandwidth reservation system. Thanks

to its flyover-based design, Helia can achieve over 2× faster for-

warding of reservation-protected traffic, more than 10 000× larger

reservations in the median, and up to 4 orders of magnitude faster

reservation bandwidth computation w.r.t. the state-of-the-art sys-

tems we compared against. Helia allows traffic sources to securely

create flyover reservations with remote ASes, compose them into

an end-to-end path, and forward critical traffic under the protection

of the reservation at record speeds: with 6.45Mpps on a single core,

it achieves 150Gbps of flyover traffic using 4 cores on a commodity

server. Even more, the reservation setup protocol is so simple it

can be run on the data fast path, removing the need for additional

control-plane infrastructure.

In line with previous work, we secure Helia against attacks.

Thanks to strong per-packet source authentication, the system can

detect reservation forgery, spoofing, and the overuse of legitimate

reservations. However, the flyover-based design also provides addi-

tional benefits from a security and availability standpoint. Since fly-

overs can be reused to compose multiple paths, the number of reser-

vation setup rounds—the most vulnerable step in the protocol—is

lower than in path-based reservation protocols, reducing the attack

surface. Then, the vast speedup in the admission procedure makes

DoS attacks on this component much harder. Further, overuse mon-

itoring is much more timely and precise in Helia: Since flyover

providers only have to keep track of reservation traffic sources,

they can deploy deterministic monitoring of reservation overuse,

with zero error and minimal overhead—only 800 kB of memory for

one hundred thousand ASes.
2
The potentially exponential number

1
Analogous to highway overpasses alleviating congestion at intersections.

2
There are around 75 thousand ASes in the Internet today [4].

https://doi.org/10.1145/3548606.3560582

of paths, on the contrary, forces path-based systems to use proba-

bilistic monitoring schemes, which are not fully reliable in detecting

misbehavior and require separate infrastructure. Finally, the simple

reservation accounting at flyover providers allows us to prove a

bounded “time to reservation”: within this deadline from the first

request packet a reservation will be made available to the source.

This is particularly useful when trying to establish a reservation

under a DDoS attack. The price that Helia pays for the simplicity

of its reservation accounting is low reservation granularity; the

source can not negotiate the size of its flyover reservations, but

instead obtains a fair share of the total flyover bandwidth.

In summary, we develop two major contributions to advance

the state-of-the-art of secure bandwidth reservation systems. We

first establish the algorithmics behind flyover reservations,
specifying how to compose flyovers, and designing an algorithm

to assign flyover bandwidth fairly. We show through simulations

on large random graphs that flyover composition provides supe-

rior scalability compared to GLWP [3], a path-based bandwidth

reservations system. Second, we design and implement Helia,
a protocol to establish and authenticate flyover reservations
at line rate and entirely on the data fast path. This surprising
result is possible thanks to the extremely simple algorithms devel-

oped in our first contribution and the use of high-speed symmetric

key cryptography [5]. We implement Helia in DPDK, and bench-

mark its admission and forwarding capability. We finally discuss

Helia’s security and availability properties.

Beyond our results on the scalability of flyover reservations, we

hope our paper will re-kindle the interest of the security community

in the difficult problem of providing affordable and robust traffic

delivery guarantees in the Internet.

2 BACKGROUND
Given the broad problem setting, we provide background on inter-

and intra-domain traffic engineering, reservation systems, and the

building blocks of our designs.

2.1 Traffic Engineering & Critical Applications
Autonomous Systems. The Internet is an interconnection of cen-

trally operated networks called autonomous systems (ASes), such

as Internet service providers (ISPs) and transit providers. ASes con-

nect with each other at peering points or interfaces, where border

routers forward traffic between the networks. It is therefore com-

mon to distinguish between intra-domain forwarding, happening

inside a single AS, and inter-domain forwarding, where traffic is

relayed across multiple ASes. This structure is shown in Figure 1a).

Critical Applications. The majority of ASes’ bandwidth is de-

voted to forwarding best effort traffic, usually generated by low-

priority applications such as video streaming and web browsing.

A small fraction of the deployed bandwidth is however dedicated

to premium services for high-paying customers that require ex-

tremely high uptimes. These critical applications include financial

settlements, sensitive information transfer, remote command and

control, key-exchange protocols, and others. One common aspect of

these applications, aside from their high-reliability requirements, is

their low bandwidth footprint. As an example, the SWIFT financial

network, which accounts for a large fraction of global inter-bank

transactions, requires on average less than 1Mbps between all of

its 11 000 member institutions [3].

Intra-Domain Reservations. Network operators employ many di-

verse strategies to protect critical application traffic from congestion

and failures. Complete traffic separation is achieved by using leased

lines or MPLS tunnels (sometimes called “virtual leased lines”) [6],

thus providing the strongest possible guarantees. Bandwidth reser-

vations can also be implemented by marking packets (e.g., using

DiffServ [7]), and then configuring appropriate queuing disciplines

at all intermediate switching elements to prioritize their forward-

ing. However, these systems either require ad-hoc infrastructure

(leased lines), or extensive configuration (MPLS tunnels, DiffServ),

and can therefore be provided only within an operator’s domain.

To this day, extending bandwidth reservations, e.g., MPLS tunnels,

across multiple ASes is a manual process, enforced by long-standing

contracts between operators. A further limiting factor is that the

security of these systems depends on their centralized operation

(e.g., to ensure that only allowed routers can set packet flags). This

assumption breaks down in the decentralized inter-domain setting.

In this paper we abstract away from the details of intra-domain

reservations, and provide a system to quickly and securely create,

compose, and tear down reservations across multiple domains.

2.2 Secure Bandwidth Reservation Systems
A few relatively recent systems promise to overcome the security

limitations of traditional bandwidth reservations protocols. To the

best of our knowledge, these are: SIBRA [8], GLWP [3], and Col-

ibri [2]. As SIBRA is the predecessor of Colibri, we do not directly

compare against it and focus on Colibri and GLWP only.

GLWP and Colibri are both path-based reservation protocols. In

a setup phase, the source AS sends a reservation packet over the

path for which it wants to establish a reservation, where each on-

path AS adds local information to the request packet. Informed by

this data-collection step, ASes can compute the amount of reserved

bandwidth they wish to grant to the source, and issue an authoriza-

tion token. This token is used by the source AS at forwarding time

to prove that its traffic is allowed to use the reservation. Thanks to

this setup phase, GLWP and Colibri ensure that no over-allocation

occurs: at any point in time, the sum of bandwidth reservations

going through some link must not be greater than the link capacity.

GLWP and Colibri also rely on other subsystems to prevent

DoS attacks: A duplicate-suppression system filters out replayed

packets [9], and a probabilistic bandwidth monitor detects the band-

width overuse from malicious sources [10–12]. Section 9 further

describes the distinctive properties of these two systems.

2.3 Technical Building Blocks
To complete the background, we describe allocation matrices, which

encode the information required to bootstrap flyover reservations,

and DRKey [5], a symmetric key distribution system that allows

Helia to scalably authenticate reservations.

Allocation Matrices. A common way to represent intra-AS for-

warding capabilities is to encode the traffic entering and exiting

the network in a (possibly time-varying) traffic matrix. Similarly,

2

Figure 1: a.) Example intra-AS network. It consists of mul-
tiple internal routers (IRs) and infrastructure components
such as a reservation service (RS). Communication with
other ASes happens through border routers (BRs). A bor-
der router handles one or more interfaces (IFs), where each
interface is connected through a link to another AS. b.) Ex-
ample allocationmatrix, assuming inter-domain link capac-
ities of 100Gbps. IF0 is an auxiliary interface representing
communication from and to entities within the AS.

an allocation matrix represents the intra-AS reservation capacity.

The allocation matrix entry M
𝑖, 𝑗

(𝐴) at the 𝑖th row and 𝑗th column

indicates the amount of reservable bandwidth AS 𝐴 can guaran-

tee from interface 𝑖 to interface 𝑗 through its internal network. To

ensure that no congestion occurs, our reservation protocol must

enforce that the aggregate traffic traversing any interface pair (𝑖, 𝑗)
is always lower than the maximum available reservation bandwidth

M
𝑖, 𝑗

(𝐴) . This property is called no over-allocation [13]. The allocation

matrix does not capture the bandwidth used by best-effort traffic.

However, unused reservation bandwidth is repurposed to also carry

best-effort traffic, thus avoiding wasted resources.

Key Distribution with DRKey. Using public-key cryptography is

too computationally expensive to authenticate reservation informa-

tion, and it would introduce a DoS attack vector if directly applied to

the problem of packet authentication. In contrast, symmetric cryp-

tography is efficient, but requires distributing and storing shared

keys. DRKey eliminates the need for keeping any state or fetching

keys by enabling the dynamic re-computation of keys at border

routers [5]. Using DRKey, a border router in AS 𝐴 can derive a

symmetric key with any other AS 𝐵 by applying a pseudorandom

function to the identifier of AS 𝐵:

K𝐴→𝐵 = PRFK𝐴
(𝐵) (1)

Then, the only information the border router needs to store isK𝐴 ,

a secret key only known to trusted infrastructure, i.e., other border

routers and machines inside AS 𝐴. On the other hand, a service in

AS 𝐵 needs to fetch K𝐴→𝐵 from AS 𝐴, where this exchange is pro-

tected by asymmetric cryptography. The arrow in K𝐴→𝐵 indicates

the asymmetry in the key establishment: entities in AS𝐴 can derive

the key on the fly (on the order of nanoseconds), while entities in

AS 𝐵 have to request the key (on the order of milliseconds).

While there exist other systems for symmetric key distribution,

they might require additional router state [14] or a trusted author-

ity [15]. In this work, we assume that the DRKey system is used to

establish shared keys between ASes.

3 FLYOVER RESERVATIONS
In this section we present the ideas behind flyover reservations.

3.1 Definition
In our terminology, a path is composed of multiple hops, where a

hop denotes the intra-domain forwarding path between the ingress

and egress interface of an AS. The main observation behind the

design of flyover reservations is that bandwidth reservations do

not necessarily need to be path-based, but that they can instead

be hop-based. Thanks to this decomposition of a path into single

hops, an on-path AS can perform the admission of a bandwidth

reservation for the source AS based solely on local information.

More specifically, the 𝑖th on-path AS provides the source AS with a

reservation starting at its ingress interface 𝑎 and ending at its egress

interface 𝑏, where the size of the reservation 𝛽
𝑎,𝑏
𝑖

is computed as

𝛽
𝑎,𝑏
𝑖

=
M

𝑎,𝑏
𝑖

max(𝜌𝑎,𝑏
𝑖

, 𝜌min)
. (2)

Here, M
𝑎,𝑏
𝑖

is the allocation matrix entry of AS 𝑖 corresponding to

the interface pair (𝑎, 𝑏), and 𝜌𝑎,𝑏
𝑖

is the number of ASes requesting a

reservation over that interface pair. The constant 𝜌min prevents the

provisioning of excessive amounts of bandwidth in scenarios where

not many ASes request a reservation. Packets forwarded under

such a reservation can use this guaranteed share of bandwidth

and are protected from congestion. By composing flyovers along

the chosen path, a source AS can construct a complete end-to-end

reservation. A discussion of alternative (but insufficient) approaches

to per-interface-pair reservations can be found in Appendix A. We

investigate a demand-aware flyover design—whereby source ASes

can request a minimum flyover bandwidth—in Appendix G.

3.2 Computing 𝝆
The number 𝜌 of ASes requesting reservations through an AS has

a significant influence on the amount of flyover reservation band-

width (Eq. (2)). Moreover, a precise accounting of the number of

remote ASes requesting a reservation is essential to the efficiency

and security of flyovers: While an over-estimation of 𝜌 may lead to

an inefficient bandwidth allocation, underestimating 𝜌 can cause

the over-allocation of bandwidth, jeopardizing the forwarding guar-

antees of the flyover reservations. This accounting is challenging as

the number of participating ASes can dynamically change, and we

do not want to introduce additional coordination overhead among

ASes, nor rely on a globally trusted registry.

We present an algorithm with which border routers can compute

a precise estimate of 𝜌 in Appendix C. Interestingly, we prove in

Appendix D that our algorithm can always grant a reservation to

any requesting AS within a bounded time interval following its first

request, without ever causing over-allocation.

3

Figure 2: Scenario where traffic control is required by the
source AS S. The flyover (orange rectangle) of transit AS T
needs to be shared among two traffic paths (green dotted
lines) traversing D1 and D2, respectively. A reservation ser-
vice (RS) inside the source AS manages the reservations.

3.3 Composing Flyovers
A source AS needs to assemble multiple flyover reservations in

order to achieve end-to-end guarantees on an Internet path. This

is in contrast to path-based reservation systems, where the source

has a single bandwidth reservation for each path. The maximum

rate at which the source can send traffic then corresponds to the

minimum reservation bandwidth of all the flyover reservations on

the path. However, this is only the case if reservation paths do

not overlap, otherwise the common flyover reservations need to be

shared among the overlapping paths (see Figure 2). As an alternative

to simply splitting a flyover reservation among multiple paths, the

source AS can use time-division multiplexing and assign each path

an interval during which this path can fully use the reservation.

The ideal assignment of reservation bandwidth to path depends

on the critical applications running at the source AS, and we there-

fore do not specify a concrete algorithm for this problem. In case of

multiple critical applications running inside the source AS, it is the

responsibility of the source AS to share the reservation bandwidth

among them. The whole logic for reservation management at the

source AS is abstracted in a dedicated reservation service.

4 HELIA
4.1 Overview
To securely instantiate flyovers, we propose Helia. We consider a

source AS 𝑆 requiring high-availability guarantees on a forwarding

path composed of at least one other AS. With Helia, the source AS

can establish flyovers with the on-path ASes, and compose them

into a uni- or bidirectional end-to-end bandwidth reservation.

In the flyover setup phase, the source AS issues an authenticated

best-effort request, which triggers on-path ASes to compute and

allocate the amount of flyover bandwidth available to the source. At

on-path ASes, this admission procedure results in (i) the allocated

flyover bandwidth 𝛽 , (ii) the flyover reservation expiration time

tsExp, and (iii) a reservation authenticator 𝛼 . The authenticator

𝛼 is a cryptographic token representing an authorization for the

source AS to send traffic at under a rate of 𝛽 immediately until time

tsExp over the specific on-path AS’ interface-pair. This triplet is

authenticated by the on-path AS and returned to the source. The

𝛼 is also encrypted for confidentiality, as anyone holding 𝛼 is able

to forward reservation traffic on behalf of the source AS 𝑆 . As a

last step, the on-path AS registers the flyover reservation for future

policing at a deterministic traffic-monitoring system, which ensures

that the source AS cannot overuse its assigned rate.

In the data transmission phase, the source AS uses the authen-

ticators received in the setup phase to compute per-packet cryp-

tographic tokens, called reservation validation fields (RVFs) and

backward reservation validation fields (BVFs). These are included

in the header of data packets at forwarding time. RVFs and BVFs

are used to efficiently authenticate the source and the reservation to

the on-path ASes: Border routers can verify them without having

to store any reservation-specific information, as they can be re-

computed “on the fly”, only based on the information in the packet

and an AS-local secret. Packets that pass this validation check are

then fed into the duplicate-suppression system, and are policed by

the deterministic traffic monitor. Successfully validated reservation

packets are scheduled to be forwarded with highest priority, which

provides increased quality of service. To renew the reservation,

the source AS can send reservation requests over the already es-

tablished reservation instead of over best-effort, which guarantees

successful reservation renewal.

Henceforth, we write 𝛽𝑖 instead of 𝛽
𝑎,𝑏
𝑖

, omitting the interfaces.

4.2 Network Model
Key Distribution. We require that the source AS 𝑆 has already

fetched symmetric keys using DRKey from all ASes on a desired

communication path, i.e., it is in possession of K𝑖→𝑆 for each on-

path AS 𝑖 . This can always be done ahead of time as keys are

refreshed only daily.

Path Characteristics. We assume that paths are stable over time,

meaning that paths do not unexpectedly change during the life-

time of a reservation. This is crucial, as otherwise no forward-

ing guarantees can be achieved. Additionally, to support bidirec-

tional reservations—where traffic from destination to source is also

protected—we assume that paths are symmetric. Bidirectional reser-

vations are only possible if the backward path is the reverse of the

forward path. If forward and backward paths differ, Helia will create

flyover reservations in the backward direction only for the ASes

in the overlap between the two paths. We discuss the applicability

of these requirements on paths characteristics to the Internet in

Appendix B.

Direct AS Interconnection. In our model, adjacent ASes connect

through direct links. In case connectivity is provided through lower-

layer interconnects at an IXP, we expect the IXP to deploy adequate

measures against congestion in its switching fabric. Alternatively,

an IXP may explicitly participate in routing and offer Helia flyovers

by registering as an AS.

Time Synchronization. Lastly, we also require time synchroniza-

tion on the order of 100ms betweenASes and their components [16–

20], which is necessary for replay suppression and to mark the

validity periods of flyover reservations.

We note that all these assumptions are in line with the require-

ments of other secure bandwidth reservation systems (§ 9).

4

4.3 Reservation Setup
In the setup phase, the source AS 𝑆 requests authenticators from

some or all on-path ASes.

Setup Request. To this end, the source AS sends a single request

packet containing its identifier 𝑆 , plus a reservation flag 𝑅𝑖 and a

backward reservation flag 𝐵𝑖 for each on-path AS for which it wants

to setup a flyover reservation. These could be all on-path ASes, or

a subset of them, depending on its requirements. 𝑅𝑖 indicates to an

Helia-enabled AS whether it is expected to return an authenticator

to the source AS in the direction of the request, and the backward

reservation flag specifies whether an authenticator for the backward

direction is required. The source adds a current timestamp tsReq

and authenticates the request for on-path AS 𝑖 using the key K𝑖→𝑆 :

Auth𝑖 = MACK𝑖→𝑆
(tsReq, 𝑅𝑖 , 𝐵𝑖)

The source identifier 𝑆 is not included in the computation of the

MAC, because it is already implicit in the derivation of K𝑖→𝑆 . The

setup request hence contains the following fields:

SetupReq = 𝑆, tsReq, (𝑅𝑖 , 𝐵𝑖 ,Auth𝑖)
∀𝑖 ∈ 𝐴 ⊆ {1, . . . , ℓ}

Here, 𝐴 refers to the subset of on-path ASes from which the source

AS wants to request a reservation. We denote by 𝐴𝐹 ⊆ 𝐴 the set of

on-path ASes for which the source AS requested a reservation in

the forward direction, and by 𝐴𝐵 ⊆ 𝐴 the set of on-path ASes for

which it requested a reservation in the backward direction. Instead

of requesting flyovers from all on-path ASes in one packet, it is

also possible for the source AS to send each on-path AS a sepa-

rate request packet. In the following, we will distinguish between

ingress border routers, which receive a reservation setup packet

from outside their AS, and egress border routers, which forward the

packet from their AS to a neighboring AS. Ingress border routers are

responsible for the admission of flyovers for the forward direction,

while egress border routers admit backward reservations.
3

Bandwidth Admission. One on-path AS after the other handles

the request as specified in Algorithm 1: upon receiving the request

packet the ingress border router of on-path AS 𝑖 performs the

bandwidth admission (in case 𝑅𝑖 is set). After checking that tsReq

is current, i.e., within a small deviation from the system clock, the

border router derivesK𝑖→𝑆 (Eq. (1)) and validates the authenticity of

the request. If the validation succeeds, the border router computes

the bandwidth guarantee 𝛽𝑖 it wants to provide to the source AS

for the interface-pair (ing, egr) that the packet is about to traverse.

Further, it specifies the time when the reservation should expire

(tsExp). The router then derives the authenticator 𝛼𝑖 :

𝛼𝑖 = MACK𝑖
(𝑆, 𝑖𝑛𝑔, 𝑒𝑔𝑟) (3)

Note that the key for the MAC computation is the secret key K𝑖 ,

only known to AS 𝑖 . The border router then performs authenticated

encryption with associated data (AEAD) with 𝛼𝑖 as the plaintext

and (𝛽𝑖 , tsExp𝑖) as the header (which is only authenticated and not

encrypted), with the key K𝑖→𝑆 . It then adds the resulting ciphertext

3
The admission could also be performed in a dedicated reservation service inside the

on-path AS. However, we consider admission on the border routers as a distinguished

feature of Helia, as this is not feasible in previously proposed secure reservation

systems, which show significantly more computation overhead than Helia.

and tag, plus 𝛽𝑖 and tsExp𝑖 to the packet. Surprisingly, all these

operations can happen in the data plane—a setup packet is handled

by the border router together with all other data traffic. As a last

step, the ingress border router registers 𝑆 , 𝛽𝑖 , and tsExp𝑖 at the

deterministic traffic monitor. Similarly, if 𝐵𝑖 is set, the egress border

router calculates and encrypts 𝛼𝑖,𝐵 , where

𝛼𝑖,𝐵 = MACK𝑖
(𝑆, 𝑒𝑔𝑟, 𝑖𝑛𝑔), (4)

authenticates it together with 𝛽𝑖,𝐵 and tsExp𝑖,𝐵 , and adds it to the

packet. If during the admission some verification check fails, the

request is not dropped, but forwarded anyways. This way, ASes

later on the path will still receive the reservation request, and can

independently perform the bandwidth admission.

Reservation Response. The corresponding setup response con-

tains the encrypted authenticators 𝛼𝐸𝑛𝑐
𝑖

, the granted bandwidth 𝛽𝑖 ,

and an expiration timestamp tsExp𝑖 , as well as Tag𝑖 protecting the

integrity of those three entries:
4

SetupResp = (𝛼𝐸𝑛𝑐𝑖 ,Tag𝑖 , 𝛽𝑖 , tsExp𝑖),

(𝛼𝐸𝑛𝑐𝑗,𝐵 ,Tag𝑗,𝐵, 𝛽 𝑗,𝐵, tsExp𝑗,𝐵)
∀𝑖 ∈ 𝐴𝐹 ,∀𝑗 ∈ 𝐴𝐵

The entries marked with an additional index 𝐵 correspond to the

backward reservations. Depending on 𝑅𝑖 and 𝐵𝑖 , the first, the sec-

ond, or both tuples may be present in the setup response.

Reservation Storage. After the request is processed by the last

desired on-path AS, the request is simply sent back to the source AS

without further processing by any AS on the return path. Finally,

the reservation service of the source AS verifies the authenticity of

the authenticators, the reservation bandwidths, and the expiration

times by validating the corresponding response tags. After decrypt-

ing the authenticators, it stores all this information for the later use

in the transmission phase.

4.4 Data Transmission
Reservation Traffic Generation. Once the source AS obtains the

authenticators, its reservation service can use them to send data

traffic over the bandwidth reservation (Algorithm 2). To authenti-

cate the traffic origin (itself), the reservation, and the length of the

packet to the on-path ASes, the source calculates per-packet MACs:

𝜑𝑖 = MAC𝛼𝑖 (tsPkt, len(pkt)) (5)

Here, tsPkt is a high-precision timestamp to uniquely identify each

packet in order to prevent replay-attacks. In the reservation packet,

the source includes a truncated version of 𝜑𝑖 called reservation

validation field (RVF): RVF𝑖 = 𝜑𝑖 [0:lenVF].
5

If the source also wants to support backwards reservations, it

additionally computes 𝜑𝐵𝑎𝑐𝑘
𝑖

:

𝜑𝑖,𝐵 = MAC𝛼𝑖,𝐵 (tsPkt, lenB) (6)

4
The reservation responses can also be implemented such that one response packet is

sent back per on-path AS, instead of one aggregated response.

5
The notation X[i:j] denotes the substring from byte i (incl.) to byte j (excl.) of X. We

assume that the MAC function also provides the properties of a PRF, and suggest a

value of 3 for lenVF. The MAC length is chosen to balance security and communication

overhead. To brute-force the key or forge a MAC, an adversary must resort to an online

brute-force attack, which is easily detectable. Further, a successful attack only allows

the adversary to send a single packet over a single hop.

5

Algorithm 1: Bandwidth Admission

(at ingress border router of AS 𝑖)

Input: K𝑖 , 𝑆 , tsReq, 𝑅𝑖 , 𝐵𝑖 , Auth𝑖
1 if !𝑅𝑖 or (now() - tsReq) ∉ [−𝛿, 𝐿 + 𝛿] then
2 Forward packet

3 Calc. K𝑖→𝑆 // Eq. (1)

4 Calc. Auth𝑖

5 if Auth𝑖 is not correct then
6 Forward packet

7 Pass (𝑆 , TsReq) to duplicate-suppression system

8 (𝛽𝑖 , tsExp𝑖)← getBandwidth()

9 if (𝛽𝑖 , tsExp𝑖) = (⊥,⊥) then
10 Forward packet

11 Calc. authenticator 𝛼𝑖 // Eq. (3)

12 𝛼𝐸𝑛𝑐
𝑖

,Tag𝑖 ← AuthEncK𝑖→𝑆
(𝛼𝑖 , [𝛽𝑖 , tsExp𝑖])

13 Add 𝛼𝐸𝑛𝑐
𝑖

,Tag𝑖 , 𝛽𝑖 , tsExp𝑖 to the packet

14 Register (𝑆, 𝛽𝑖 , tsExp𝑖) at the traffic monitor

15 Forward packet

Similarly to the RVF, only the first lenVF bytes of 𝜑𝑖,𝐵 are included

in the reservation packet, which we denote as backward reservation

validation field (BVF): BVF𝑖 = 𝜑𝑖,𝐵[0:lenVF].
5
The lenB field speci-

fies the maximal length in bytes of such a response packet sent over

the backward reservation. Thus, the source AS controls how much

backwards traffic a destination is allowed to send. This is crucial

because without this mechanism to limit return traffic the desti-

nation could abuse the backward reservation to cause bandwidth

overuse, that would then be attributed to the source. To support a

higher backwards packet rate compared to the forwards rate, Helia

can add multiple timestamps and BVFs to the forward packet.

Helia therefore provides two complementary mechanisms to

protect two-way communication: (i) the use of backward reserva-

tions, or (ii) the setup of a separate Helia (forward) reservation from

the destination to the source. These mechanisms fit two slightly

different use cases. Backwards reservations are most useful when

the source expects a short reply, and may therefore not want to

incur in the delay introduced by the destination having to create a

reservation in the opposite direction. For high-bandwidth return

traffic, however, we expect the destination to set up a dedicated

reservation. Thus, the destination can better control the sending

rate, and the source can avoid the overhead of sending multiple

timestamps and BVFs in each forward packet.

A Helia reservation packet has the following fields:

PktData = 𝑆,D, tsPkt, lenB, RVF𝑖 , BVF𝑗 , P

∀𝑖 ∈ 𝐴𝐹 ,∀𝑗 ∈ 𝐴𝐵

The D-flag indicates whether the packet is sent in the forward (D=0)

or in the backwards direction (D=1).

Reservation Traffic Forwarding. In the forward direction, the

ingress border router of AS 𝑖 checks the validity of the RVF as

specified in Algorithm 3. First, the router verifies whether the

packet timestamp is current. If it is not, the packet is forwarded as

Algorithm 2: Sending Reservation Traffic

(at reservation service of source AS)

Input: 𝑆 , 𝛼𝑖 (∀𝑖 ∈ 𝐴 ⊂ {1, . . . , ℓ}),
𝛼𝑖 .𝐵 (∀𝑗 ∈ 𝐵 ⊂ {1, . . . , ℓ}), lenB, P

1 pkt← (create new packet with reserved space for header

and payload)

2 pkt-len← len(pkt)

3 tsPkt← time()

4 for 𝑖 ∈ 𝐴𝐹 do
5 Calc. 𝜑𝑖 // Eq. (5)

6 for 𝑗 ∈ 𝐴𝐵 do
7 Calc. 𝜑 𝑗,𝐵 // Eq. (6)

8 Create packet with 𝑆 , 𝐷 ← 0, tsPkt, lenB, RVF𝑖 (∀𝑖 ∈ 𝐴𝐹),

BVF𝑗 (∀𝑗 ∈ 𝐴𝐵), P

9 Send packet to first on-path AS

Algorithm 3: Validating Reservation Traffic

(at ingress border router of AS 𝑖 , in the forward direction,

i.e., for 𝐷 = 0)

Input: K𝑖 , pkt
1 if now() - tsPkt ∉ [−𝛿, 𝐿 + 𝛿] then
2 Forward packet as best-effort

3 Calc. 𝛼𝑖 // Eq. (3)

4 Calc. 𝜑𝑖 // Eq. (5)

5 if 𝜑𝑖 [0:lenVF] != RVF𝑖 then
6 Forward packet as best-effort

7 Pass (𝑆 , tsPkt) to duplicate-suppression system

8 Pass (𝑆 , len(pkt), ing, egr) to traffic monitor

9 Forward packet (high priority)

best-effort, and therefore without any delivery guarantees. Other-

wise, the router recomputes 𝛼𝑖 based on Eq. (3), which it further

uses to derive the RVF according to Eq. (5). It compares the com-

puted RVF to the one included in the packet. Again, if they do not

match, the packet is forwarded with best-effort. Finally, a duplicate-

suppression system drops the packet in case it was replayed, and the

deterministic traffic monitor checks that the packet does not cause

an overuse of the flyover reservation. In the backwards direction

the process is very similar, with the difference that the D-flag is now

enabled, meaning that it is the egress border router (from the view

of the original source AS) that verifies the BVF. The verification of

the BVF is identical to the verification of the RVF, but instead of

recomputing 𝛼𝑖 and 𝜑𝑖 , the router derives 𝛼𝑖,𝐵 and 𝜑𝑖,𝐵 . If for some

ASes the RVF or BVF is not present or its validation fails, then the

border router forwards the packet as best-effort. The prioritization

of successfully validated reservation traffic can be implemented in

practice through queuing disciplines such as priority queuing. With

such a mechanism, no bandwidth is wasted, as unused reservation

capacity is dynamically reallocated to best-effort traffic.

Reservation Renewal. As soon as a flyover reservation is estab-

lished, the traffic using it is protected until its expiry. It is then

beneficial to renew the reservation, i.e., to send a setup request

6

before the reservation expires, using the (bidirectional) reservation

instead of best-effort, which guarantees a successful renewal. Be-

cause an authenticator is neither based on the provided bandwidth

nor the expiration time (see Eq. (3)), the authenticator does not

need to be updated when the reservation is renewed.

4.5 Deployment Considerations
Allocation Matrix Changes. So far we assumed a static topology

with static allocation matrices. However, link failures, capacity

upgrades, and the introduction of new links can alter the network

topology. An AS must be able to respond to these events, without

breaking the forwarding guarantees during that update. In case an

AS wants to decrease an entry of its allocation matrix, it directly

uses the updated value in the computation of future bandwidth

reservation sizes. To prevent congestion, the capacity between the

two corresponding interfaces is only reduced after at least one

reservation validity period. Increasing an entry in the traffic matrix

is also possible, and in this case, an AS uses the updated value

directly after increasing the network capacity for the corresponding

interface-pair. Changes to one allocation matrix entry do not affect

the size of reservations passing through other interface-pairs.

Monitoring. Like other secure bandwidth reservation systems,

Helia requires a duplicate-suppression system plus a bandwidth

monitor deployed at every on-path AS to filter out replayed pack-

ets and to detect reservation overuse by malicious source ASes.

Because previous systems are path-based, they are forced to rely

on a probabilistic bandwidth monitor to police traffic: given the

(potentially exponentially) many reservation paths that cross an

interface pair, deterministic monitoring would require excessive

amounts of memory. In contrast, flyover providers in Helia only

have to police source ASes, irrespective of which paths the reser-

vations take. Helia can thus use a deterministic monitor based on

token-buckets [21] to precisely police the traffic of every AS. As a

token-bucket can be implemented using a single 8-byte timestamp

(see Appendix E), even for 100 000 ASes the required memory adds

up to only 800 kB. A malicious AS overusing its flyover reservation

can therefore be detected with certainty.

Infrastructure Fault Tolerance. In Helia, the setup and renewal

of flyover reservations is done directly at the border routers, no

communication with the reservation services of the on-path ASes

is necessary. This is in contrast to existing reservation systems,

where a setup request not only traverses all border routers, but

also the reservation services of the on-path ASes. Having fewer

infrastructure dependencies for the reservation setup reduces the

setup time, the computation and communication overhead, as well

as overall protocol complexity. In case of a border router failure,

all communication that needs to pass the affected router, including

reservation traffic, gets naturally dropped. The bandwidth admis-

sion and the reservation data traffic forwarding only involve a few

simple checks and computations, reducing the potential for imple-

mentation errors and failures. In case of a failure of the reservation

service at the source AS, including the loss of all authenticators,

flyovers for a path can be re-established in a single round trip.

Incremental Deployment. Whereas in path-based reservation pro-

tocols every AS on a reservation path needs to support the reserva-

tion protocol, Helia can be deployed incrementally: the reservation

setup requests and data plane reservation fields are ignored by ASes

not participating in the protocol. Such a selective processing of

packets can be implemented through hop-by-hop extension header

options, which are readily available in IPv6 and SCION [22, 23].

These partial reservations, which are only enforced by Helia-enabled

ASes, are further discussed in § 8.1. Partial reservations offer in-

creasingly higher protection (compared to best-effort forwarding),

until all on-path ASes deploy Helia and full end-to-end forwarding

guarantees are achieved. Finally, an AS only needs to update the set

of border routers through which reservations should be supported.

Internal routers do not need to be modified.

5 ARE FLYOVERS LARGE ENOUGH?
We investigate this question by simulating the end-to-end flyover

reservation sizes on a range of network topologies. In particular,

we show that flyover reservations are large enough to carry critical

communication traffic. For comparison, we also compute the size of

GLWP reservations. (§ 2.2).

5.1 Reservation Algorithms
Flyovers. Source ASes requesting reservations from remote fly-

over providers obtain bandwidth shares computed as in Eq. (2).

They can then freely allocate the flyover bandwidth among pro-

tected paths (§ 3.3). This decision is rooted in local policies, as the

AS could, e.g., decide to grant more of the reserved resources to

higher-priority communication paths. We choose to evaluate two

source allocation strategies at the extremes of the policy space:

• Concurrent flyover algorithm: The source AS assigns an equal

share of the flyover reservation for an interface pair to each

protected path traversing it.

• Maximum flyover algorithm: The source AS assigns the full

bandwidth of the flyover to one of the protected paths at a

time, maximizing the end-to-end reservation size for each

path, but preventing the concurrent use of the flyover.

The size of the final reservation for a path is given by the minimum

of the shares of all on-path flyover reservations.

GLWP. We also compare against the reservation sizes computed

by the algorithm used in GLWP, for a total of three different path

reservation algorithms. We do not simulate Colibri’s allocations as

they depend on the concrete traffic demands in the network, as well

as other complex topological features that are outside the scope of

our simulation (such as SCION isolation domains [24]).

5.2 Simulation Setup
Topologies. We model networks as graphs, with nodes repre-

senting ASes in the Internet and unidirectional weighted edges

representing inter-AS links. Each node is augmented with external

and internal interfaces and an allocation matrix. We simulate the

output of the three reservation strategies on randomly-generated

Barabási–Albert graphs.
6
We chose this particular type for ran-

dom graphs as it produces scale-free graphs, which are found to

6
As implemented in the FNSS library [25]. Simulations are run using Snakemake [26].

7

closely approximate the structure of technological networks [27],

the Internet in particular.

Link Capacity Model. We assign bandwidth to links in each topol-

ogy based on a degree-gravity model, for which links connecting

nodes with higher degrees receive a higher bandwidth. This is

usually the case in real networks, where large, central nodes typi-

cally meet higher traffic demands with higher-capacity infrastruc-

ture. Link bandwidths are selected from the range 40–400Gbps in

increments of 40Gbps, which are representative of inter-domain

link bandwidths.
7
The bandwidth of the internal link—i.e., the link

connecting the external interfaces and the internal interface of a

node—is set as the maximum capacity of all external links.

Allocation Matrices. The allocation matrix M𝑖 for each node 𝑖

is computed starting from the capacities of the links C𝑎 attached

at each interface 𝑎. First, entry (𝑎, 𝑏) in the matrix is initialized

with the capacity C𝑏 of the edge attached to the node at interface 𝑏.

Then, each column of the matrix is normalized to the capacity of the

outgoing edge, such that

∑
𝑎 M

𝑎,𝑏
𝑖

= C𝑏 for all interfaces 𝑏. Finally,

if any of the row sums exceed the capacity of an incoming edge,

the relative entries are further normalized such that

∑
𝑏 M

𝑎,𝑏
𝑖
≤ C𝑖 .

Destination Sampling. The flyover bandwidth allocation algo-

rithm (Eq. (2)) takes advantage of the fact that an AS is usually

communicating with only a fraction of the total number of ASes

at any given moment. We therefore run simulations in which each

AS communicates only with a fraction 𝑟 of ASes. Unfortunately,

however, realistic estimates of 𝑟 are not readily available. Therefore,

we evaluate the reservation algorithms for different values of 𝑟 . For

every value of 𝑟 and for each source node, we randomly sample

destinations skewing the distribution in favour of nodes with a

higher degree: For every value of 𝑟 and for each source node, we

sample 𝑑 = round(𝑟 · 𝑁) destinations, where the probability of

sampling a destination node 𝑖 is 𝑝𝑖 = deg𝑖/
∑

𝑗 deg𝑗 .

Metrics: Reservation Size & Cover. We are interested in showing

which of the three algorithms consistently provides the largest

reservations. We first compare the distribution of reservation sizes

in each graph. However, this does not well represent the nature of

critical traffic, for which either there is enough reserved bandwidth

available, or the reservation is useless.

To capture this binary requirement on critical traffic, the original

GLWP paper introduces the notion of 𝛾-cover. Intuitively, the 𝛾-

cover of a node is the fraction of other nodes it can reach at any

time with a reservation of size at least 𝛾 , which is called the cover

threshold. Formally, given all reservations computed by algorithm

𝐴 on a graph with nodes 𝑉 , |𝑉 | = 𝑁 , the cover for node 𝑖 is:

𝛾-cover𝐴𝑖 =

∑
𝑗 ∈𝑉 𝐼 (𝑎𝑖 𝑗 > 𝛾)

𝑁
(7)

where 𝐼 (·) is an indicator function, and 𝑎𝑖 𝑗 is the size of the reser-

vation from node 𝑖 to node 𝑗 . However, flyovers only consider a

fraction 𝑟 of destinations. Therefore, we have to adapt the previ-

ous definition to consider the set 𝑆𝑖 of sampled destination nodes

(|𝑆𝑖 | = round(𝑟 ·𝑁)) for each node 𝑖: 𝛾-cover𝐴
𝑖
=

∑
𝑗∈𝑆𝑖 𝐼 (𝑎𝑖 𝑗>𝛾)
round(𝑟 ·𝑁) . We

7
These sizes are arguably conservative: Today’s Internet undersea cables can carry

hundreds of Tbps [28].

10 12 10 10 10 8 10 6 10 4 10 2 100 102

Allocation (Gbps)

0.00

0.25

0.50

0.75

1.00

CD
F

(a) Reservation size distribution.

10 6 10 5 10 4 10 3 10 2 10 1

Threshold (Gbps)

0.00

0.25

0.50

0.75

1.00

M
ed

ia
n

co
ve

r
(b) Median 𝛾-cover achieved with increasing cover thresholds.

1000 2000 3000 4000 5000
Nodes

0.00

0.25

0.50

0.75

1.00
M

ed
ia

n
co

ve
r

(c) Median 100-kbps cover, varying the size of the graphs.

Conc. flyover; r=10%
Max flyover; r=10%
GLWP; r=10%

Conc. flyover; r=100%
Max flyover; r=100%
GLWP; r=100%

Figure 3: Simulation results for a 5000-node graph. The
shaded areas represents the interval between the 10% and
100% destination sampling rate.

relax the definition of 𝛾-cover to accept that nodes in the cover

may not be reachable simultaneously, which is the case for the

maximum flyover algorithm.

5.3 Results
We report here the results of three experiments that are illustrative

of the differences between the algorithms.

Reservation Size Distribution. Figure 3a shows the cumulative

distribution function (CDF) of the reservation sizes on a 5000-nodes

graph for the three algorithms and varying sampling rates. Con-

firming intuition, we notice that lower sampling rates yield higher

reservation sizes compared to the higher sampling rates. We further

observe that GLWP reservation sizes are lower, and distributed over

8

a much wider range of values, compared to the reservation sizes

produced by assembled flyover reservations. The median reserva-

tion computed with the maximum flyover algorithm is more than

10 000× larger than the median GLWP reservation, which is due to

GLWP’s reservation bandwidths decreasing exponentially in the

path length (§ 9.1). This difference is also highlighted in the next

experiment.

Median 𝛾-Cover. Figure 3b shows the median 𝛾-cover across all

nodes for 𝛾 varying from 1 kbps to 100Mbps, computed on the

same 5000-node graph. The maximum flyover algorithm provides

high reservation sizes, and therefore high median cover, while

the concurrent flyover algorithm only achieves full cover up to a

threshold of 100 kbps, and degrades to zero around the 10Mbps

threshold. Finally, GLWP’s median cover is generally substantially

lower, although it degrades less rapidly.

Cover Scalability. The median 100 kbps-cover of the three algo-

rithms, computed on random graphs of increasing size from 500 to

5000 nodes, is shown in Figure 3c. We observe that the maximum

flyover algorithm provides a 100 % cover with this threshold even

at the highest number of nodes. The concurrent flyover algorithm

has a broad range of median covers, depending on the selected

sampling rate. As we also observe in Figure 3b, this algorithm pro-

vides full cover for 𝑟 = 10 %, and drops to little more than 20 % for

𝑟 = 100 %. The sharp drop for 𝑟 = 100 % at around 2000 nodes is

due to the binary nature of the cover threshold: The increased num-

ber of communication paths between nodes increases contention,

reducing the end-to-end flyover bandwidth for many paths below

the threshold. This effect is typically more pronounced for longer

paths. For shorter paths—connecting nodes at the edge and towards

the core—the end-to-end flyover bandwidth remains instead within

the cover threshold, as they do not have to compete with many

other paths for bandwidth. Further increasing the size of the graph

does not significantly impact the reservation size for these short

peripheral paths, leading to fairly static cover for graph sizes above

2000 nodes.

5.4 Discussion
From our simulation results we can distill the following general

statements. First, an AS seeking to connect to multiple destina-

tions concurrently using up to 100 kbps of reserved bandwidth

can employ the concurrent flyover algorithm version. Second, for

extremely critical communications, an AS can use the maximum fly-

over algorithm and sacrifice simultaneous communication to reach

another node in the network with a reservation of at least 10Mbps.

Using the maximum flyover algorithm can thus greatly extend the

range of reserved-bandwidth communication. In simulated settings,

flyover-based algorithms greatly outperform GLWP.

Relevance to the Internet. The super-quadratic computational

complexity of the simulations here presented limits the size of

the graphs we could consider. The graphs used in the simulations

are thus small compared to the size of the Internet—roughly an

order of magnitude smaller. Nevertheless, these graphs are more

challenging for reservation algorithms than the actual Internet.

The links used in the simulations are conservatively sized when

compared to the multi-Tbps links that compose today’s Internet

1 4 8 12 16 20
Cores

0
40
80

120
160

Th
ro

ug
hp

ut
 (G

bp
s)

H=1
H=2
H=4
H=8
H=16

(a) Unidirectional reservations.

1 6 12 18 24 30 36
Cores

0
40
80

120
160

Th
ro

ug
hp

ut
 (G

bp
s)

H=1
H=2
H=4
H=8
H=16

(b) Bidirectional reservations.

Figure 4: Evaluation of Algorithm 2. Packet generation per-
formance for traffic in gigabits per second at the reservation
service of the source AS for different numbers of cores and
AS-level hops (H). The packets carry a payload of 1000 B.

1 2 4 6 8 10 12
Cores

0
40
80

120
160

Th
ro

ug
hp

ut
 (G

bp
s)

P=1000
P=750
P=500
P=250

Figure 5: Evaluation of Algorithm 3. Forwarding perfor-
mance in gigabits per second at an ingress border router for
different numbers of cores and payload sizes (P).

backbone. This additional available capacity will proportionally

increase the size of flyover reservations. Then, the Internet core is

densely interconnected, and pairs of ASes are often connected by

multiple links. This multi-link connectivity is not reflected in our

network models, and further increases the bandwidth available for

reservations. Finally, the number of ASes in the Internet increases

linearly [4] while network capacity grows exponentially [29].

6 IMPLEMENTATION AND EVALUATION
We implement and evaluate the bandwidth admission (Algorithm 1),

the reservation traffic generation (Algorithm 2), and the packet

validation (Algorithm 3) procedures, in order to demonstrate high

performance at every component. As forward and backward traffic

validation procedures are identical, we only evaluate the packet

validation performance at an ingress border router. A performance

comparison with Colibri and GLWP is provided in Appendix F.2.

9

6.1 Implementation
We implement all three algorithms using Intel DPDK [30].

8
In

particular, we leverage the Bloomfilter implementation in theDPDK

membership library; the AEAD is based on the IETF variant of the

ChaCha20-Poly1305 construction provided by libsodium [35]; and

we use the AES-128 block cipher in CBC mode for MAC functions.

To speed up the AES computations, we rely on Intel’s AES-NI [36]

hardware instructions available on all modern Intel CPUs.

The bandwidth admission uses the algorithm specified in Ap-

pendix C to compute 𝜌 . For deterministic monitoring and policing

the reservations we use a hash table, mapping an AS number to

its dedicated token bucket. Each token bucket is represented by a

single 8 B timestamp (Appendix E). We do not explicitly include

the path (a list of interface pairs) in the packet, as we assume that

ingress border routers know the egress interface to which each

Helia packet must be forwarded, based on the destination address,

local policies, and possibly other information in the header.

The duplicate suppression system is directly taken from the

literature [9], and we do not include it in our evaluation.

6.2 Testbed
Our measurement setup consists of two machines, a commodity ma-

chine with an Intel Xeon 2.1 GHz CPU, which runs our algorithm

implementation that is to be evaluated, and a Spirent SPT-N4U,

which serves both as traffic generator (when evaluating the band-

width admission and the traffic validation) and bandwidth monitor

(when evaluating the traffic generation). Both machines are con-

nected by four 40Gbps bidirectional Ethernet links. We evaluate all

three implementations separately one after the other, they never

run at the same time on the commodity machine.

6.3 Results
Bandwidth Admission. The total duration of the bandwidth ad-

mission is 618 ns on average. This measurement also includes the

overhead induced by the algorithm to compute 𝜌 . In particular,

we used Algorithm 4 from Appendix C to implement the func-

tion getBandwidth(). The overhead caused by this computation

amounts to 30 ns, four orders of magnitude lower than the admis-

sion computation overhead of some of the previously proposed

systems (Appendix F.2). In comparison, the most expensive op-

eration is the authenticated encryption with 411 ns. The overall

reservation admission overhead in Helia is similar to the per-packet

overhead of other data-plane protocols [37, 38]. The admission pro-

cess can be parallelized by running it on multiple cores, enabling a

border router to handle reservation requests at line rate.

Traffic Generation. The traffic generation performance of the

source AS for unidirectional and bidirectional traffic is shown in

Figure 4. For packets with a payload of 1000 B and for a path with

eight per-hop reservations, one core of the source AS achieves

a throughput of 17.62Gbps for unidirectional and 10.40Gbps for

bidirectional reservation traffic. This is already enough for most

ASes and the critical applications they are running, especially when

8
We chose DPDK because (i) it enables rapid prototyping of dataplane protocols; (ii) it is

supported by a large range of devices [31]; and (iii) it is used by various manufacturers

of both BGP/IP [32, 33] and SCION border routers [34]. Yet, any production-ready

implementation of Helia does not necessarily need to rely on DPDK.

Table 1: Evaluation of Algorithm 3. Breakdown of the aver-
age packet processing time in nanoseconds at the ingress
border router of an on-path AS. The processing time is in-
dependent of the reservation path length and payload size.

Task Avg. proc. time (ns)

Verify Helia packet header format 24

Validate timestamp is current 7

Calculate 𝛼 using Eq. (3) 30

AES key expansion of 𝛼 38

Verify RVF using Eq. (5) 22

Total 121

considering that the average path length in the Internet is around

five AS-level hops [39, 40]. Still, the throughput can be linearly

increased by simply dedicating more cores to the reservation traffic

generation. Because our implementation assigns only a single one

of the four ports to each core, the throughput gain is lower for the

last four cores added before achieving 160Gbps.

Traffic Validation. Figure 5 shows the throughput achieved by

a border router validating and forwarding incoming reservation

traffic. For packets with 1000 B payload, a single core can process

38.48Gbps of reservation traffic, which is close to the 40Gbps ca-

pacity of the Ethernet links connecting our measurement machines

(a core is only assigned to a single link port). With only 12 cores

the router is able to saturate all links for a total of 160Gbps even in

the case of short 250 B payload packets. Expressed in packets per

second, one core can process 6.45Mpps, which is at least a factor

of two improvement over the state of the art [2, 3]. A fine-grained

analysis of the router processing overhead can be found in Table 1.

All cryptographic operations take between 22 and 38 ns, the total

processing time is 121 ns.

Deterministic Monitoring and Policing. For packets with a payload

of 1000 B, one core of the deterministic bandwidth monitor is able

to check and police reservations at a rate of 37.81Gbps even for

traffic originating from one million different ASes. This result can

be further improved by using multiple cores that each handle a

subset of all source ASes (every core has its own hash table), letting

the system scale linearly in the number of cores in use. The memory

overhead is 8 bytes per monitored AS. LOFT [12], the state-of-the-

art probabilistic monitor used by Colibri and GLWP, shows similar

processing speeds but must keep per-flow state in the slow path.

7 SECURITY ANALYSIS
7.1 Threat Model

Security Objectives. With this analysis, we aim to show that Helia

is a viable solution to provide strong traffic delivery guarantees,

irrespective of attackers. This goal translates into the following low-

level security requirements. An adversary must not be able to: (R1)
trick the system into increasing its allocated bandwidth share, nor

into reducing the share of other ASes; (R2) indefinitely prevent ASes
from setting up a flyover reservation; (R3) utilize the reservation
granted to a different source AS; (R4) drop or significantly delay

10

legitimate reservation traffic; and (R5) use reservations outside

their validity period or beyond their maximum bandwidth.

Adversary Model. An on-path adversary can trivially break our

security goals by modifying, delaying, or dropping packets. There-

fore, we restrict the adversary model accordingly.

Helia’s security properties hold only for paths consisting of

honest and uncompromised ASes. The adversary can nevertheless

observe, inject, and replay packets on the links connecting on-path

ASes. Further, we do not place any restrictions on the capabilities

and number of off-path adversaries. An off-path adversary can

observe, modify, inject, drop, delay and replay packets, and even

compromise entire ASes, including their control services, border-

and internal routers, and get access to AS key material. We finally

assume that cryptographic primitives such as MACs and PRFs are

secure, and that the probability of false negatives in the duplicate-

suppression system is negligible—as it can be driven arbitrarily low

with additional resources.

7.2 Attacks against Reservation Admission
Helia defends against bogus admission requests by authenticating

every packet, and against replayed requests thanks to the duplicate-

suppression system. The authenticators are encrypted to protect

against potential observers, as source authentication depends on

their confidentiality. In the following, we discuss Helia’s resistance

against further attacks targeting reservation admission.

Repeated Reservation Requests (R1). An adversary may try to

issue multiple authentic reservation requests to obtain multiple

reservations for the same flyover, and thus more bandwidth than

intended. However, the authenticators and reservation sizes the

source AS receives are the same, irrespective of the number of re-

quests the source sends (Eq. (3)). Therefore, the bandwidth monitor

of the provider AS only attributes reservation data traffic to one

single reservation, preventing this attack.

Sybil Attacks (R1). By registering a large number of ASes, an

adversary can try to get a higher aggregate of Helia bandwidth,

while at the same time reducing the reservation size for honest ASes.

However, such an attack is cumbersome and likely to be detected

because AS numbers must be requested from regional Internet

registries through a manual procedure [41, 42] Furthermore, an

adversary would need to set up the necessary components and

keys to support BGP and RPKI. If Helia is used in a future Internet

architecture such as SCION, the computation of the reservation can

be adapted to a per-ISD/per-AS division of the bandwidth, i.e., an

allocation matrix entry is first divided by the number of ISDs, and

only then on a per-AS basis.

Another mitigation against sybil attacks is their cost, as reserva-

tions are expected to be granted only in return for payment (§ 8.2).

Finally, ASes can define “allow lists” for their flyovers by defining

access policies on which source ASes are allowed to obtain the

symmetric keys necessary to issue a reservation request.

Bandwidth Admission Request Flooding (R2). Computationally

expensive services accessible by an unpredictable number of po-

tentially untrusted sources need to be protected against flooding

attacks, where one or multiple adversaries try to exhaust the com-

putational resources of the service, with the objective of rendering

the service unavailable for honest users. Such flooding attacks do

not have any impact on legitimate requests, regardless of whether

the adversaries’ requests are authentic or not. In fact, as shown in

§ 6, validating and admitting a reservation request in Helia is highly

efficient, and packets can be processed at line rate. Therefore, no

honest request is ever discarded.

DoC Attacks (R2). In a denial-of-capability (DoC) attack the net-

work is flooded with excessive amounts of traffic in order to prevent

one or multiple source ASes from obtaining an authenticator. As

flyover reservations can be renewed over existing reservation traf-

fic, and because reservation traffic can not be disturbed by any

DDoS attempts, only the very first reservation request sent over

best-effort traffic can actually be attacked. Moreover, an adversary

can try to prevent the source AS from fetching symmetric keys

during the execution of the DRKey protocol. Because those keys

can be requested already in advance, an adversary needs to success-

fully attack the exchange channel for a considerably long period of

time. Finally, the Docile [43] system may be used to protect both

the key exchanges and the initial reservation setup request without

introducing any other avenues for DoC attacks.

7.3 Attacks against Reservation Traffic
Framing Attacks (R3). With spoofed source AS identifiers in the

reservation packets, an adversary can try to frame a honest source

AS by causing bandwidth overuse at provider ASes, which could

possibly result in sanctions against the source AS. Another impli-

cation of a successful framing attack is the rejection of a portion of

the reservation traffic at provider ASes that already incorporated

the spoofed packets in the bandwidth monitoring. However, Helia

prevents spoofing of source AS identifiers in the reservation data

packets by means of per-packet source authentication. An authen-

ticator 𝛼 used in the computation of an RVF or BVF is only known

by one specific and legitimate source AS, where encryption ensures

confidentiality of the authenticators in the reservation setup.

DDoS against QoS (R4). As soon as an end-to-end reservation is

established, packets sent over this channel profit from forwarding

guarantees and enhanced quality of service (QoS). To perturb traffic

in this reservation channel, an off-path adversary can attempt to

cause congestion at border routers by sending large volumes of

attack traffic, which could lead to legitimate reservation packets

being delayed or dropped. However, volumetric attacks based on

best-effort traffic have no impact, as border routers forward reserva-

tion traffic with strictly higher priority. Similarly, attacks based on

legitimate reservation traffic can also not impact other reservations

in the same AS: All reservations are policed so that they can use at

most the portion of bandwidth allocated for them, while definitions

of the flyover computation and the allocation matrix ensure that

the sum of all reservation sizes never results in an over-allocation

of any intra- or inter-AS link.

Reservation Overuse (R5). Bandwidth overuse by a malicious or

misconfigured source AS is detected and policed by deterministic

bandwidth monitoring systems deployed at every on-path AS.

11

Tricking the monitoring system by reusing the same packet

header, in particular with the same timestamp and the same RVFs,

for multiple data packets with different payloads, is not possible.

The bandwidth monitor receives packets only after they have been

vetted by the duplicate-suppression system, which discards packets

with a combination of source AS identifier and timestamp it has

already seen. It is up to the AS observing overuse attempts to decide

whether to notify or even sanction the misbehaving source AS, for

example by denying future reservations.

Sending beyond Expiration (R5). Flyover authenticators are valid
until the underlying key established by the DRKey system is rolled

over (Eqs. (3) and (4)). Nevertheless, a malicious or misconfigured

source AS still cannot send valid reservation traffic during periods

for which no reservation was requested, e.g., after a reservation

expired and was not actively renewed. The reason is that, while the

source AS can still generate packets with valid RVFs and BFVs, the

deterministic bandwidth monitor is aware of the exact expiration

times. Packets using expired reservations are then forwarded as

best-effort traffic, i.e., without any delivery guarantees.

8 DISCUSSION
8.1 Emerging Properties
We highlight two novel use-cases of Helia’s reservations, enabled

by the simplicity and composability of flyovers.

Partial Reservations. Instead of requesting multiple flyover reser-

vations using a single setup packet, an AS can alternatively send a

setup packet for every on-path AS independently. Taking this ob-

servation one step further, the AS can also use flyover reservations

to only protect selected parts of the whole forwarding path, instead

of assembling flyover reservations to a full end-to-end reservation.

On-path ASes for which the source AS did not add RVFs to the data

packets simply forward the traffic as best-effort. Although no end-

to-end guarantees are achieved this way, such partial reservations

are useful to bypass ASes that do not participate in Helia, or to save

costs by only protecting traffic on congested links.

Self-Renewing Reservations. In Helia, a reservation setup request

only contains the authenticated source AS identifier and the reser-

vation directionality flags. This information is also present in the

reservation data packets, and therefore this type of traffic can in

principle also serve as a means to renew a reservation (by com-

puting the allowed bandwidth and expiration time, and updating

the bandwidth monitor accordingly), even though those packets

do not contain an explicit setup request. This idea leads to the

concept of self-renewing reservations, i.e., reservations that are not

renewed through explicit requests, but implicitly by the source

AS sending traffic over the reservation. Such implicit renewals do

not trigger a response packet, and therefore a reservation renewal

request is still necessary in case the source AS wants to learn the

precise reservation bandwidth. The reservation expires when the

source AS stops generating reservation traffic for a certain time

period. Self-renewing reservations are enabled by Helia’s ability to

efficiently admit bandwidth reservations at border routers.

8.2 Reservation Billing
Billing of inter-domain services is a complex topic, and an in-depth

analysis is outside the scope of the paper. Nevertheless, we briefly

sketch a promising approach that enables simple payments between

ASes, and thus supports novel business models based on flyover

offerings. To this end, we first observe that a source should be billed

a flat rate for a flyover reservation—regardless of the resulting reser-

vation size—because (i) sources have no control over the resulting

amount of bandwidth, and (ii) the additional cost of forwarding

flyover- instead best-effort traffic is small, and anyways marginal

compared to the overall fixed infrastructure costs [44]. Then, billing

the reservation admission can be reduced to billing for the key ex-

change, as the key is not only needed to secure the reservation

setup, but is also necessary to issue reservation requests in the

first place. Further, the key exchange happens in the control plane,

which is not particularly time critical, allowing for additional billing

operations.

9 RELATEDWORK
9.1 GLWP
The GMA-based light-weight communication protocol (GLWP) en-

ables the establishment of inter-domain bandwidth reservations

without on-path ASes having to keep any per-reservation state

at their reservation services. GLWP achieves this by computing a

bandwidth reservation for some path solely based on the traffic ma-

trices of the on-path ASes. The GMA [13] algorithm, which forms

the theoretical foundation behind this computation, ensures that

despite every guarantee being greater than zero, no over-allocation

will ever occur. Intuitively, GMA achieves this property by assign-

ing larger bandwidths to shorter paths, and (exponentially) smaller

bandwidths to longer paths. GLWP can also support traffic matrices

that change over time, without violating the no-overuse property.

Not keeping state about the per-path reservations comes at a cost,

however. GLWP requires mutual authentication between every pair

of on-path ASes to protect against adversaries on the links that may

tamper with the request packet in order to get a larger reservation

or to cause over-allocation. This quadratic number of authentica-

tions adds a large amount of additional state to the reservation

services. Further, upon receipt of a reservation request, a GLWP

reservation service needs to verify message authentication codes

of all on-path ASes. Finally, GLWP assumes a weaker threat model,

where no two colluding malicious ASes are neighbors.

9.2 Colibri
Based on the SCION [24] network architecture, Colibri establishes

inter-domain reservations by assembling multiple shorter reserva-

tions, called path segments. Colibri establishes an end-to-end reser-

vation (EER) over up to three path-segment reservations (SegRs).

In contrast to GLWP, Colibri needs to keep state at each AS about

all granted SegRs and EERs in order to keep track of the remaining

bandwidth for future reservations. In case of insufficient bandwidth,

a Colibri reservation request fails. Due to its complexity, the algo-

rithm that determines the size of the bandwidth to be admitted for

each reservation request is specified and analyzed separately [45].

12

A detailed comparison of GLWP and Colibri to Helia is provided in

Appendix F.

9.3 Other Bandwidth Reservation Systems
CoDef [46] uses a reactive mechanism requesting source ASes to re-

duce their bandwidth when congestion occurs, which is insufficient

to provide strict communication guarantees. Portcullis [47] protects

packets based on a proof-of-work scheme. While this approach is

computationally expensive for normal data traffic, it might be suit-

able for certain low-rate critical applications. However, Portcullis

can only provide probabilistic forwarding guarantees. The recursive

congestion shares (RCS) [48] architecture also provides improved

delivery guarantees in the Internet. Nonetheless, the end-to-end re-

sulting allocations are exponentially decreasing in the path length.

STRIDE [49] only protects parts of the reservation path, assuming

that no congestion arises in the unprotected sub-path. To the best

of our knowledge, only SIBRA [8], GLWP [3], and Colibri [2] satisfy

our requirements to a secure inter-domain bandwidth reservation

system. As Colibri is the successor of SIBRA, we omit a discussion

of SIBRA in this section.

10 CONCLUSIONS & FUTUREWORK
The public Internet lacks means to protect critical application traffic

in a secure and scalable manner. We address this issue through fly-

overs: exclusive bandwidth reservations that cross an autonomous

system (AS) from ingress to egress border router. By assembling

multiple flyovers, source ASes can create end-to-end protected

paths to provide strong delivery guarantees for their critical traffic.

Our simulations based on a topology of 5000 ASes show that even

at times of maximum demand, every AS can communicate with

any other AS using reserved-bandwidth tunnels of over 10Mbps.

We concretely instantiate flyovers in Helia, a system to protect

the flyover setup and forwarding from request flooding and Sybil

attacks, and prevent adversaries from overusing their reservation

or framing honest ASes. Our prototype authenticates and forwards

reservation traffic at 150Gbps using four cores on commodity hard-

ware, where a single core achieves a forwarding rate of 6.45Mpps.

Even reservation requests can be handled at line rate on the fast

path. Beyond these performance improvements, the innovative use

of flyover reservations enables many advancements over the state

of the art, including precise reservation monitoring and policing,

flexible traffic control at the reservation source, and an incremental

path to deployment for Helia.

With this paper we present a step forward in the direction of

secure and highly reliable traffic forwarding in the Internet. Albeit

our prototype is already viable, we see opportunities for future

work, such as fleshing out the economic aspects of flyovers or

specifying the forwarding behaviour at the source.

ACKNOWLEDGMENTS
Wewould like to thank Carlo Saladin for the interesting discussions

regarding the concept of flyover reservations; Patrick Gruntz, for

contributing to the correctness proofs; Markus Legner, for his early

feedback and suggestions on the system design; Elham Ehsani

Moghadam, Simon Scherrer, and Juan Angel García-Pardo for the

interesting discussions; and the anonymous reviewers for their

helpful feedback. We gratefully acknowledge support from ETH

Zurich, the Zurich Information Security and Privacy Center (ZISC),

and Armasuisse.

REFERENCES
[1] X. Xiao, Technical, Commercial and Regulatory Challenges of QoS: An Internet

Service Model Perspective. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2008.

[2] G. Giuliari, D. Roos, M.Wyss, J. A. García-Pardo, M. Legner, and A. Perrig, “Colibri:

A cooperative lightweight inter-domain bandwidth-reservation infrastructure,”

in Conference on Emerging Networking Experiments and Technologies (CoNEXT),

2021.

[3] M. Wyss, G. Giuliari, M. Legner, and A. Perrig, “Secure and scalable

QoS for critical applications,” in Proceedings of the IEEE/ACM International

Symposium on Quality of Service (IWQoS), 2021. [Online]. Available: https:

//netsec.ethz.ch/publications/papers/2021_iwqos_glwp.pdf

[4] T. Bates, “CIDR report,” www.cidr-report.org/as2.0/, 2022.

[5] B. Rothenberger, D. Roos, M. Legner, and A. Perrig, “PISKES: Pragmatic Internet-

scale key-establishment system,” in Proceedings of the ACM Asia Conference on

Computer and Communications Security (ASIACCS), 2020.

[6] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Archi-

tecture,” RFC 3031, 2001.

[7] S. Blake, D. Black, M. Carlson, E. B. Davies, Z. Wang, and W. Weiss, “An architec-

ture for differentiated services,” IETF RFC 2475, 1998.

[8] C. Basescu, R. M. Reischuk, P. Szalachowski, A. Perrig, Y. Zhang, H.-C. Hsiao,

A. Kubota, and J. Urakawa, “SIBRA: Scalable Internet bandwidth reservation archi-

tecture,” in Proceedings of the Network and Distributed System Security Symposium

(NDSS), 2016.

[9] T. Lee, C. Pappas, A. Perrig, V. Gligor, and Y.-C. Hu, “The case for in-network

replay suppression,” in Proceedings of the ACM Asia Conference on Computer and

Communications Security (ASIACCS), 2017.

[10] H. Wu, H.-C. Hsiao, and Y.-C. Hu, “Efficient large flow detection over arbitrary

windows: An algorithm exact outside an ambiguity region,” in Proceedings of

Conference on Internet Measurement Conference, 2014.

[11] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford,

“Heavy-hitter detection entirely in the data plane,” in Symposium on SDN Research

(SOSR), 2017.

[12] S. Scherrer, C.-Y. Wu, Y.-H. Chiang, B. Rothenberger, D. Asoni, A. Sateesan,

J. Vliegen, N. Mentens, H.-C. Hsiao, and A. Perrig, “Low-rate overuse flow tracer

(loft): An efficient and scalable algorithm for detecting overuse flows,” Proceedings

of the Symposium on Reliable Distributed Systems (SRDS), 2021.

[13] G. Giuliari, M.Wyss, M. Legner, andA. Perrig, “GMA: A pareto optimal distributed

resource-allocation algorithm,” in Structural Information and Communication

Complexity - 28th International Colloquium, SIROCCO, 2021.

[14] X. Liu, A. Li, X. Yang, and D. Wetherall, “Passport: secure and adoptable source

authentication,” in USENIX NSDI, 2008.

[15] J. Kohl and C. Neuman, “The Kerberos Network Authentication Service (V5),”

IETF RFC 1510, 1993.

[16] L. Arceo-Miquel, Y. S. Shmaliy, and O. Ibarra-Manzano, “Optimal synchronization

of local clocks by GPS 1PPS signals using predictive FIR filters,” IEEE Transactions

on Instrumentation and Measurement, vol. 58, no. 6, 2009.

[17] R. Annessi, J. Fabini, and T. Zseby, “SecureTime: Secure multicast time synchro-

nization,” https://arxiv.org/abs/1705.10669, 2017.

[18] R. Annessi, J. Fabini, and T. Zseby, “It’s about time: Securing broadcast time

synchronization with data origin authentication,” in IEEE International Conference

on Computer Communication and Networks (ICCCN), 2017.

[19] IEEE, “IEEE 1588-2019 – IEEE standard for a precision clock synchronization

protocol for networked measurement and control systems,” 2019.

[20] J. Martin, J. Burbank,W. Kasch, and P. D. L. Mills, “Network Time Protocol version

4: Protocol and algorithms specification,” RFC 5905, 2010.

[21] D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols, and Archi-

tectures. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[22] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” RFC

2460, 1998.

[23] Anapaya Systems and ETH Zurich, “SCION Extension Header Specification,”

https://scion.docs.anapaya.net/en/latest/protocols/extension-header.html, 2021.

[24] L. Chuat, M. Legner, D. Basin, D. Hausheer, S. Hitz, P. Müller, and A. Perrig, The

Complete Guide to SCION. From Design Principles to Formal Verification. Springer

International Publishing AG, 2022.

[25] L. Saino, C. Cocora, and G. Pavlou, “A toolchain for simplifying network simula-

tion setup,” in Proceedings of the 6th International ICST Conference on Simulation

Tools and Techniques, ser. SIMUTOOLS ’13. ICST, Brussels, Belgium, Belgium:

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-

tions Engineering), 2013.

[26] F. Mölder, K. Jablonski, B. Letcher, M. Hall, C. Tomkins-Tinch, V. Sochat, J. Forster,

S. Lee, S. Twardziok, A. Kanitz, A. Wilm, M. Holtgrewe, S. Rahmann, S. Nahnsen,

13

https://netsec.ethz.ch/publications/papers/2021_iwqos_glwp.pdf
https://netsec.ethz.ch/publications/papers/2021_iwqos_glwp.pdf
www.cidr-report.org/as2.0/
https://arxiv.org/abs/1705.10669
https://scion.docs.anapaya.net/en/latest/protocols/extension-header.html

and J. Köster, “Sustainable data analysis with snakemake [version 1; peer review:

1 approved, 1 approved with reservations],” F1000Research, vol. 10, no. 33, 2021.

[27] A. D. Broido and A. Clauset, “Scale-free networks are rare,” Nature Communica-

tions, vol. 10, no. 1, 2019.

[28] SubmarineNetworks, “Marea,” https://www.submarinenetworks.com/systems/

trans-atlantic/marea, 2022.

[29] I. Keslassy, S. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard, and N. McKe-

own, “Scaling internet routers using optics,” in Proceedings of the 2003 Conference

on Applications, Technologies, Architectures, and Protocols for Computer Communi-

cations, ser. SIGCOMM ’03, 2003, p. 189–200.

[30] DPDK Project, “Data Plane Development Kit,” https://dpdk.org, 2021.

[31] ——, “DPDK: Supported Hardware,” https://core.dpdk.org/supported/, 2021.

[32] Intel Corporation, “6WIND vRouter,” https://www.6wind.com/wp-content/

uploads/2019/09/Intel-Border-vRouter-Solution-Brief.pdf, 2019.

[33] Extreme Networks, “ExtremeSwitching VSP 7400 Series,” https:

//cloud.kapostcontent.net/pub/2e54ed1d-627e-4b3b-ab12-7a38cbc3b9a4/vsp-

7400-data-sheet, 2021.

[34] Anapaya Systems, “SCION-Internet and Anapaya Software,” https:

//content.anapaya.net/hubfs/collateral/anapaya-scion-Internet-and-anapaya-

software-fs-en.pdf?hsLang=en, 2020.

[35] libsodium, “The Sodium cryptography library,” https://github.com/jedisct1/

libsodium, 2021.

[36] S. Gueron, “Intel Advanced Encryption Standard (AES) new in-

structions set,” Intel Corporation, Tech. Rep., 2010. [Online].

Available: https://www.intel.com.bo/content/dam/doc/white-paper/advanced-

encryption-standard-new-instructions-set-paper.pdf

[37] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Perrig, “EPIC: Every packet is

checked in the data plane of a path-aware Internet,” in Proceedings of the USENIX

Security Symposium, Aug. 2020.

[38] B. Wu, K. Xu, Q. Li, Z. Liu, Y.-C. Hu, M. J. Reed, M. Shen, and F. Yang, “Enabling

efficient source and path verification via probabilistic packet marking,” in 2018

IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), 2018.

[39] C. Wang, Z. Li, X. Huang, and P. Zhang, “Inferring the average AS path length

of the Internet,” in IEEE International Conference on Network Infrastructure and

Digital Content (IC-NIDC), 2016.

[40] T. Böttger, G. Antichi, E. L. Fernandes, R. di Lallo, M. Bruyere, S. Uhlig, G. Tyson,

and I. Castro, “Shaping the Internet: 10 years of IXP growth,” https://arxiv.org/

abs/1810.10963v3, 2019.

[41] J. Hawkinson and T. Bates, “Guidelines for creation, selection, and registration

of an autonomous system (AS),” RFC 1930, 1996.

[42] RIPE NCC, “Autonomous System Numbers,” https://www.ripe.net/manage-ips-

and-asns/as-numbers/request-an-as-number.

[43] M. Wyss, G. Giuliari, M. Legner, and A. Perrig, “DoCile: Taming denial-of-

capability attacks in inter-domain communications,” in Proceedings of the

IEEE/ACM International Symposium on Quality of Service (IWQoS), 2022.

[44] O. Andrew, N. Papak, and Z. Zhi-Li, “Flat versus metered rates, bundling, and

‘bandwidth hogs’,” in Workshop on the Economics of Networks, Systems, and Com-

putation, 2011.

[45] T. Weghorn, S. Liu, C. Sprenger, A. Perrig, , and D. Basin, “N-Tube: Formally

verified secure bandwidth reservation in path-aware internet architectures,” in

Proceedings of IEEE Computer Security Foundations Symposium (CSF), 2022.

[46] S. B. Lee, M. S. Kang, and V. D. Gligor, “Codef: Collaborative defense against large-

scale link-flooding attacks,” in Proceedings of the ACM Conference on Emerging

Networking Experiments and Technologies (CoNEXT), 2013.

[47] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu, “Portcullis:

Protecting connection setup from denial-of-capability attacks,” in Proceedings of

the ACM SIGCOMM Conference, 2007.

[48] L. Brown, G. Ananthanarayanan, E. Katz-Bassett, A. Krishnamurthy, S. Rat-

nasamy, M. Schapira, and S. Shenker, “On the future of congestion control for the

public Internet,” in Proceedings of the ACM Workshop on Hot Topics in Networks

(HotNets), 2020.

[49] H.-C. Hsiao, T. H.-J. Kim, S. Yoo, X. Zhang, S. B. Lee, V. Gligor, and A. Perrig,

“STRIDE: Sanctuary trail – refuge from Internet DDoS entrapment,” in Proceedings

of the ACM SIGSAC Symposium on Information, Computer and Communications

Security (CCS), 2013.

[50] F. Golkar, T. Dreibholz, and A. Kvalbein, “Measuring and comparing internet

path stability in ipv4 and ipv6,” in 2014 International Conference and Workshop on

the Network of the Future (NOF), 2014.

[51] W. de Vries, J. J. Santanna, A. Sperotto, and A. Pras, “How asymmetric is the

internet?” in Intelligent Mechanisms for Network Configuration and Security, 2015.

[52] S. Peter, U. Javed, Q. Zhang, D. Woos, T. Anderson, and A. Krishnamurthy, “One

tunnel is (often) enough,” in ACM SIGCOMM Computer Communication Review

(CCR), 2014.

[53] A. C. Snoeren and B. Raghavan, “Decoupling policy from mechanism in internet

routing,” SIGCOMM Comput. Commun. Rev., 2004.

[54] B. Raghavan, P. Verkaik, and A. C. Snoeren, “Secure and policy-compliant source

routing,” IEEE/ACM Trans. Netw., 2009.

[55] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton, M. J. Freed-

man, A. Haeberlen, Z. G. Ives, A. Krishnamurthy, W. Lehr, B. T. Loo, D. Mazières,

A. Nicolosi, J. M. Smith, I. Stoica, R. van Renesse, M. Walfish, H. Weatherspoon,

and C. S. Yoo, “The NEBULA future internet architecture,” in The Future Internet.

Springer, 2013.

[56] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu, A. Akella, D. G.

Andersen, J. W. Byers, S. Seshan, and P. Steenkiste, “XIA: An architecture for an

evolvable and trustworthy internet,” in Proceedings of the ACM Workshop on Hot

Topics in Networks (HotNets), 2011.

[57] T. Hurst, “Bloom filter calculator,” https://hur.st/bloomfilter/?n=10000&p=0.01&

m=&k=7, 2022.

[58] “Transmission Control Protocol,” IETF RFC 793, Sep. 1981.

[59] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure Trans-

port,” IETF RFC 9000, May 2021.

A OTHER RESERVATION COMPUTATIONS
At first glance, two alternative approaches to per–interface-pair

reservations suggest themselves: per–ingress-interface reserva-

tions, where the bandwidth of the ingress link is shared (

∑
𝑗 M

𝑖, 𝑗

(𝑘)),
and per–egress-interface reservations, where the bandwidth of the

egress link (

∑
𝑖 M

𝑖, 𝑗

(𝑘)) is shared among the requesting ASes. While

those approaches increase the flexibility of a source AS, they can

not provide any communication guarantees. With per–ingress-

interface reservations, if many ASes decide to send traffic over

multiple ingress interfaces towards the same egress interface of

a shared provider AS, congestion can arise and packets will un-

avoidably be dropped. This becomes particularly evident in case

the egress link has low capacity. The same reasoning applies to per–

egress-interface reservations, where congestion occurs for example

if there is an egress interface with a high capacity link and an ingress

interface with comparably low capacity. Also the combination of

per-ingress- and per–egress-interface reservations is insufficient,

as traffic may already get dropped in the intra-AS network.

B SUPPORTED NETWORK ARCHITECTURES
In our network model (§ 4.2), we assume that the Internet archi-

tecture provides paths that are stable over the reservation validity

periods. Without path stability, flyover reservations would be inval-

idated by path changes, therefore voiding the possibility of achiev-

ing delivery guarantees. Path stability is also explicitly required

by other bandwidth reservation systems (§ 9). Further, to make

use of Helia’s bidirectional reservations, we also need to assume

that paths are symmetric, i.e., that packets between some source

and destination traverse the same sequence of interfaces in both

directions. In the following, we discuss path stability and path sym-

metry in the current Internet as well as in next-generation network

architectures.

BGP. In the current Internet, based on the Border Gateway Pro-

tocol (BGP), path stability can generally not be guaranteed. While

paths have been shown to be stable on the order of days [50], there

is no absolute guarantee that paths do not change unpredictably:

routing events can trigger network re-convergence and hijacking

attacks can redirect traffic to adversary-controlled paths. Moreover,

the majority of BGP paths are asymmetric [51].

Still, there are several means to achieve path stability and path

symmetry in the current Internet. For instance, the ARROW sys-

tem [52]—originally designed to protect against routing attacks—

achieves these properties by having ISPs offer tunneled transit

through their networks. Customers can then buy and combine such

14

https://www.submarinenetworks.com/systems/trans-atlantic/marea
https://www.submarinenetworks.com/systems/trans-atlantic/marea
https://dpdk.org
https://core.dpdk.org/supported/
https://www.6wind.com/wp-content/uploads/2019/09/Intel-Border-vRouter-Solution-Brief.pdf
https://www.6wind.com/wp-content/uploads/2019/09/Intel-Border-vRouter-Solution-Brief.pdf
https://cloud.kapostcontent.net/pub/2e54ed1d-627e-4b3b-ab12-7a38cbc3b9a4/vsp-7400-data-sheet
https://cloud.kapostcontent.net/pub/2e54ed1d-627e-4b3b-ab12-7a38cbc3b9a4/vsp-7400-data-sheet
https://cloud.kapostcontent.net/pub/2e54ed1d-627e-4b3b-ab12-7a38cbc3b9a4/vsp-7400-data-sheet
https://content.anapaya.net/hubfs/collateral/anapaya-scion-Internet-and-anapaya-software-fs-en.pdf?hsLang=en
https://content.anapaya.net/hubfs/collateral/anapaya-scion-Internet-and-anapaya-software-fs-en.pdf?hsLang=en
https://content.anapaya.net/hubfs/collateral/anapaya-scion-Internet-and-anapaya-software-fs-en.pdf?hsLang=en
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://www.intel.com.bo/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com.bo/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://arxiv.org/abs/1810.10963v3
https://arxiv.org/abs/1810.10963v3
https://www.ripe.net/manage-ips-and-asns/as-numbers/request-an-as-number
https://www.ripe.net/manage-ips-and-asns/as-numbers/request-an-as-number
https://hur.st/bloomfilter/?n=10000&p=0.01&m=&k=7
https://hur.st/bloomfilter/?n=10000&p=0.01&m=&k=7

transits from one or multiple ISPs. As a more general framework,

Platypus [53, 54] achieves path stability through source routing

based on capabilities, where end users can select the paths their

traffic takes. Path symmetry in Platypus is implemented by means

of reply capabilities.

Next-Generation Architectures. To overcome BGP’s shortcomings,

several next-generation Internet architectures have been proposed,

many of them providing path stability and path symmetry by de-

sign. SCION [24], for example, achieves path stability by decoupling

routing decisions from the dissemination of path information, thus

avoiding any path convergence issues. SCION paths are encoded

in form of packet-carried forwarding state (PCFS) at the level of

AS interfaces, providing optimal conditions for Helia’s deployment.

Paths are valid on the order of several hours and are guaranteed

not to change during that period, making them resistant to hijack-

ing attempts. NEBULA [55] and XIA [56] are further examples of

network architectures providing path stability.

C COMPUTING THE NUMBER OF
REQUESTING ASES

We provide an algorithm for the flyover size computation that esti-

mates 𝜌 , i.e., the number of requesting ASes, on each border router.

The algorithm consists of two subroutines: Algorithm 4 calculates

the reservation size and is hence executed at the border router every

time it receives a reservation request, while Algorithm 5 is called

periodically at intervals of 𝜖 and serves the purpose of updating 𝜌

based on the demand observed in the near past.

To keep track of the requesting ASes, our algorithm needs three

Bloom filters: BP, BC, and BCC. BP contains the identifiers of all

ASes that can successfully be provided with a flyover reservation in

the current interval. BC collects the ASes that issued a request in the

current interval, and BCC is equal to the state of BC at the end of the

previous interval. Additionally, the variable 𝜌 is used to compute

the reservation size for requests arriving in the current interval and

𝜌𝑚𝑖𝑛 ≥ 1 denotes the minimum value that 𝜌 can assume. Lastly,

𝜔 (0 < 𝜔 ≤ 1) denotes the maximum portion of allocation matrix

bandwidth that is allowed to be allocated by the algorithm.

In Algorithm 5, when a new interval starts, the variables and

bloom filters are updated: 𝜌 is assigned the number of ASes that

issued a request in the last interval (|BC |) or in the penultimate

interval (|BCC |). The algorithm ensures that 𝜌 is always at least as

large as 𝜌𝑚𝑖𝑛 . In the following step, the Bloom filters are swapped:

BCC becomes BP, BC becomes BCC, and BP is reset (all ASes are

removed, i.e., the Bloom filter bits set to zero) and becomes BC.

In Algorithm 4, upon arrival of a reservation request, the re-

questing AS 𝑆 is added to BC. If AS 𝑆 is already in BP, it receives a

flyover reservation of size

𝜔 ·M𝑖,𝑗

(𝑘)
𝜌 , that will expire after an interval

of 𝜖 . If AS 𝑆 is not in BP, the reservation request fails. In this case,

AS 𝑆 can still issue requests in the next intervals. As shown in

Appendix D, at most 2𝜖 after its first request, AS 𝑆 is guaranteed

to receive a flyover reservation. Because the algorithm provides at

most 𝜔 ·M𝑖, 𝑗

(𝑘) bandwidth to all requesting ASes together, there is

(1−𝜔) ·M𝑖, 𝑗

(𝑘) bandwidth left. The border router can divide this left-

over bandwidth among ASes for which the bandwidth admission

Algorithm4: Fine-grained bandwidth admission. Executed

upon arrival of a reservation request at AS k.

Input: BP, BC, 𝜌 , 𝜔 , 𝑆 , 𝑖 , 𝑗
Output: 𝛽 , tsExp

1 BC ← BC ∪ {𝑆}
2 if 𝑆 ∈ BP then

3 return
𝜔 ·M𝑖,𝑗

(𝑘)
𝜌 , now() + 𝜖

4 else
5 return ⊥,⊥

Algorithm 5: Update procedure. Executed after a time 𝜖

following the last execution.

Input: BP, BC, BCC, 𝜌
1 𝜌 ← max(|BC ∪ BCC |, 𝜌𝑚𝑖𝑛)
2 (BP, BCC, BC) ← (BCC, BC, BP .Reset())

in Algorithm 4 failed, so that they still get a reservation already

at their first request. For instance, the border router can keep 𝜃

fixed slots with bandwidth

(1−𝜔) ·M𝑖,𝑗

(𝑘)
𝜃

, and hence in every interval

𝜖 provide up to 𝜃 ASes with such tentative reservations.

This algorithm can be deployed either once on an ingress border

router, or multiple times for connections to different egress inter-

faces. While the first approach is more frugal in terms of memory

overhead, the latter approach allows for more fine-grained esti-

mates of 𝜌 and can hence provide higher reservation sizes. Also,

Bloom filter sizes can be chosen on each router separately based

on the topology and historical data. For example, if a border router

expects 10 000 ASes, it could choose 7 hash functions for the Bloom

filter; to achieve a false positive probability of 1 percent, the mem-

ory overhead required by the Bloom filter would then be less than

12KB [57]. Furthermore, we suggest to choose 𝜖 in the order of

ten seconds, and to set 𝜔 around 1.2, meaning that apart from the

|BP | registered ASes, additional 0.2 × |BP | unregistered ASes can

immediately get a flyover reservation on their first request. The

update times, i.e., the times at which a new interval starts, do not

need to be synchronized between different border routers or ASes.

D CORRECTNESS PROOFS
Theorem D.1. At most 2𝜖 after the first request, the requesting

AS will successfully be granted a flyover reservation.

Proof. Assume the AS requests a reservation at some time 𝑡 .

The AS is then added to BC. At time 𝑡 +𝜖 , the next interval will have
started, and the AS will be in BCC due to the Bloom filter rotation

at the end of Algorithm 5. If an AS sends a request at 𝑡 + 2𝜖 , the
interval will have changed again so that the AS will be in BP, and

hence Algorithm 4 will return a flyover reservation. □

Theorem D.2. Assume that there are no false positives occurring

at any of the Bloom filters. At every point in time, the sum of all

granted flyover reservations for the interface-pair (i, j) of AS k is

smaller than 𝜔 ·M𝑖, 𝑗

(𝑘) .

15

Proof. We formulate the algorithm in a form that is simpler to

analyze. For that, consider four arbitrary but consecutive intervals,

where 𝑅1, 𝑅2, 𝑅3, and 𝑅4 denote the set of ASes that issue a request

in the corresponding interval. We want to prove that there is no

over-allocation in the fourth interval. For this, we need to show

that the sum of the flyovers granted to the successful ASes in 𝑅3
plus the bandwidth granted to the successful ASes in 𝑅4 is less than

𝜔 · M𝑖, 𝑗

(𝑘) . Note that an AS in 𝑅3 is only successful in receiving a

flyover reservation if it also issued a request in the first interval, i.e.,

if the AS is in 𝑅1. If it is successful, the AS gets a flyover reservation

of

𝜔 ·M𝑖,𝑗

(𝑘)
|𝑅1∪𝑅2 | starting in the third interval. Similarly, an AS in 𝑅4 is

only successful if it is also in 𝑅2. If successful, it gets a bandwidth of

𝜔 ·M𝑖,𝑗

(𝑘)
|𝑅2∪𝑅3 | starting in the fourth interval. Also, an AS that successfully

got a reservation both in the third and fourth interval, i.e., it is in

𝑅1 ∩𝑅2 ∩𝑅3∩𝑅4, will only be able to use one of those reservations
at times where they overlap. Let 𝐵 be the total bandwidth provided

as flyover reservations in the fourth interval. Then we have:

𝐵 ≤ |𝑅1 ∩ 𝑅2 ∩ 𝑅3 ∩ 𝑅4| ·max

{ 𝜔 ·M𝑖, 𝑗

(𝑘)
|𝑅1 ∪ 𝑅2 |

,
𝜔 ·M𝑖, 𝑗

(𝑘)
|𝑅2 ∪ 𝑅3 |

}
+ |(𝑅1 ∩ 𝑅3)\(𝑅2 ∩ 𝑅4) | ·

𝜔 ·M𝑖, 𝑗

(𝑘)
|𝑅1 ∪ 𝑅2 |

+ |(𝑅2 ∩ 𝑅4)\(𝑅1 ∩ 𝑅3) | ·
𝜔 ·M𝑖, 𝑗

(𝑘)
|𝑅2 ∪ 𝑅3 |

Case

𝜔 ·M𝑖,𝑗

(𝑘)
|𝑅1∪𝑅2 | ≥

𝜔 ·M𝑖,𝑗

(𝑘)
|𝑅2∪𝑅3 | :

𝐵 ≤ |(𝑅1 ∩ 𝑅3) ∩ (𝑅2 ∩ 𝑅4) | ·
𝜔 ·M𝑖, 𝑗

(𝑘)
|𝑅1 ∪ 𝑅2 |

+ |(𝑅1 ∩ 𝑅3)\(𝑅2 ∩ 𝑅4) | ·
𝜔 ·M𝑖, 𝑗

(𝑘)
|𝑅1 ∪ 𝑅2 |

+ |(𝑅2 ∩ 𝑅4)\(𝑅1 ∩ 𝑅3) | ·
𝜔 ·M𝑖, 𝑗

(𝑘)
|𝑅1 ∪ 𝑅2 |

=
| (𝑅1 ∩ 𝑅3) ∪ (𝑅2 ∩ 𝑅4) |

|𝑅1 ∪ 𝑅2 |
· 𝜔 ·M𝑖, 𝑗

(𝑘)

≤ |𝑅1 ∪ 𝑅2 ||𝑅1 ∪ 𝑅2 |
· 𝜔 ·M𝑖, 𝑗

(𝑘)

= 𝜔 ·M𝑖, 𝑗

(𝑘)

Case

𝜔 ·M𝑖,𝑗

(𝑘)
|𝑅1∪𝑅2 | <

𝜔 ·M𝑖,𝑗

(𝑘)
|𝑅2∪𝑅3 | :

𝐵 ≤ |(𝑅1 ∩ 𝑅3) ∩ (𝑅2 ∩ 𝑅4) | ·
𝜔 ·M𝑖, 𝑗

(𝑘)
|𝑅2 ∪ 𝑅3 |

+ |(𝑅1 ∩ 𝑅3)\(𝑅2 ∩ 𝑅4) | ·
𝜔 ·M𝑖, 𝑗

(𝑘)
|𝑅2 ∪ 𝑅3 |

+ |(𝑅2 ∩ 𝑅4)\(𝑅1 ∩ 𝑅3) | ·
𝜔 ·M𝑖, 𝑗

(𝑘)
|𝑅2 ∪ 𝑅3 |

Algorithm 6:Memory-efficient token-bucket implementa-

tion. The configuration happens through a particular choice

of the committed information rate (CIR), committed burst

size (CBS), and the time interval (T), where they are related

through T × CIR = CBS. The token-bucket consists only of

a timestamp (ts).

Input: CIR, T, pkt, ts
1 pkt-len← len(pkt)

2 now← time()

3 pkt-time← pkt-len ÷ CIR

4 if max(ts, now) + pkt-time ≤ now + T then
5 ts← max(ts, now) + pkt-time

6 return true

7 else
8 return false

=
| (𝑅1 ∩ 𝑅3) ∪ (𝑅2 ∩ 𝑅4) |

|𝑅2 ∪ 𝑅3 |
· 𝜔 ·M𝑖, 𝑗

(𝑘)

≤ |𝑅2 ∪ 𝑅3 ||𝑅2 ∪ 𝑅3 |
· 𝜔 ·M𝑖, 𝑗

(𝑘)

= 𝜔 ·M𝑖, 𝑗

(𝑘)

The use of 𝜌𝑚𝑖𝑛 in the algorithm ensures that |𝑅1∪𝑅2 | and |𝑅2∪𝑅3 |
are both greater than zero. □

E TOKEN-BUCKETWITHOUT COUNTER
In standard literature, the token-bucket algorithm is either im-

plemented using a counter and a timer or using a counter and

a timestamp [21]. The first approach does not scale as for every

flow (or every source AS, in the case of Helia) a separate timer is

needed. Also, timers are often not suitable for high-performance

applications. The second approach is computationally already very

efficient—we show through Algorithm 6 that it is possible to further

improve the implementation by only keeping a single timestamp,

thus achieving better memory efficiency.

F COMPARISON
This section highlights the most important differences between

GLWP, Colibri, and Helia.

F.1 Flexibility
Traffic Control. In GLWP and Colibri, AS-level reservations are

almost static. The size of a reservation in GLWP is always the

same, even after renewal, where allocation matrix changes at on-

path ASes constitute the only exception. In Colibri, SegRs have a

validity of approximately five minutes. Therefore, if two reservation

paths overlap, and during some time interval one SegR is fully

utilized while the other is not, a source AS in Colibri cannot quickly

move free capacity from one reservation to the other. While even

inherently impossible in GLWP, dynamically moving reservation

capacity between overlapping paths can be done instantaneously

through traffic control in Helia (see § 3.3).

16

Dynamic Bandwidths. In Colibri, an AS specifies the bandwidth

it wants to reserve in the reservation request. Reserving only little

bandwidth means that other ASes can reserve more. GLWP and

Helia by default do not provide this flexibility. A concrete design of

a demand-aware flyover version is presented in Appendix G.

Allocation Matrix Changes. In Colibri, traffic matrices are as-

sumed to be static—the possibility to change them over time is not

discussed in the literature. In principle this is feasible however, by

always computing with the more conservative values from the old

and new allocation matrix during reservation setups and renewals.

Decreasing an entry in the traffic matrix takes at least as long as

the maximum validity period of the SegRs, which is in the order

of minutes. In GLWP reservations can stay valid for even longer

time periods, and thus updating the traffic matrix also takes longer.

Moreover, increasing an allocation matrix entry in GLWP can cause

reservations through seemingly unaffected interface-pairs to actu-

ally decrease. All these issues do not occur in Helia, as the duration

of an allocation matrix update is in the order of seconds.

Reservation Service Recovery. For stateful reservation systems

such as Colibri, a collapsing reservation service has far-reaching

consequences. Loosing information about the authenticators means

that existing reservations become unusable. An AS can try to cre-

ate new reservations, but those may be small or even get denied,

because the existing but inaccessible reservations take up large

portions of the link capacities. Existing reservations for which an

AS acts as transit provider are unaffected by a service failure, but

they cannot be renewed, and no further reservations can be estab-

lished. The latter is due to the service not having information about

the current reservations anymore, and hence it does not know the

fraction of free network capacity. In contrast, lost authenticators

in GLWP and Helia can be requested again in a single round trip.

Moreover, the service in GLWP is stateless with respect to transit

reservations, and in Helia the setup and renewal packets do not

even need to go through a reservation service at on-path ASes.

Incremental Deployment. Whereas in GLWP and Colibri every

AS on a reservation path is required to support the corresponding

protocol, Helia can be deployed incrementally: the header fields of

the reservation setup and data transmission packets are ignored

by ASes not participating in the protocol. The forwarding and QoS

guarantees increase with every AS deploying Helia.

F.2 Performance
Reservation Admission. The bandwidth computation for a reser-

vation request in Helia, as specified in Algorithm 4, only takes 30 ns.

The overall admission overhead including authentication and en-

cryption operations amounts to 618 ns, which means that admission

can be performed at line rate. In GLWP, the admission overhead

strongly depends on the number of ASes along the reservation path.

Both the bandwidth computation according to the GMA algorithm

as well as the number of MAC calculations increase with every

additional on-path AS. The inputs to the MACs are longer than in

Helia, and therefore more block cipher operations are needed in

their computations. Colibri requires 0.4ms and 1.25ms to process

an EER- and SegR admission, respectively, which does not yet ac-

count for the authentication overhead [2]. Opposed to Helia, ASes

in GLWP and Colibri need to process the setup request not only

once in the forward direction but also again when the packet is

returned from the destination to the source.

Transport Layer. In Colibri, a setup request is computationally

much more expensive compared to GLWP and Helia, which makes

packet loss along the desired reservation path particularly undesir-

able. While in GLWP and Helia the source AS can simply re-issue a

request packet after a timeout, Colibri needs a reliable transport pro-

tocol such as TCP [58] or QUIC [59] between reservation services

of neighboring ASes. This adds complexity and requires additional

state at the reservation services, which is important to consider

given the frequent EER setup and renewal requests.

Communication Overhead. Ideally, the header of a reservation

packet is as small as possible, since a larger header consumes band-

width that could otherwise be used for data traffic. Assuming all

header fields that serve the same purpose also have the same length

in GLWP, Colibri, and Helia, e.g., the source AS identifier, the poten-

tially included reservation path, the validation fields or the packet

timestamp, then for unidirectional reservation traffic the Colibri

header is 17 and the GLWP 15 B longer than the Helia header.
9

Hence for an average Internet path length of five AS-level hops,

Helia can support bidirectional reservations, i.e., include its BVFs of

3 B each, to reach around the same header size as GLWP or Colibri

require for unidirectional traffic.

Authenticator Updates. Reservation services in Colibri andGLWP

need to update their authenticators every time they renew a reser-

vation. In contrast, authenticator updates are rare events in Helia,

they only occur when the keys established through DRKey change.

In GLWP and Helia, multiple critical applications share the same

reservation, i.e., the same authenticators, and the reservation ser-

vice in the source AS is responsible to fairly distribute the avail-

able reservation bandwidth among those applications. In Colibri,

however, every endpoint requests and then frequently renews the

authenticators for its own EERs.

Lack of Available Bandwidth. As bandwidth sizes in GLWP de-

crease exponentially with the length of a reservation path, they can

become too small to be practically useful, in which case a reserva-

tion setup request fails. In Colibri, reservation requests are denied

if there is not enough free capacity along the reservation path. In

Helia, a request is only rejected if a many ASes want to suddenly

establish a reservation for the very first time at the same inter-face

pair of the same AS (Appendix C). Also, a request sent 2𝜖 after the

initial request is guaranteed to succeed (Theorem D.1).

Reservation Granularity. In Colibri, every end host has its own

reservation, which not only implies more overhead at the end hosts

due to reservationmanagement, but also at ASes due to fine-grained

reservation monitoring and policing, frequent reservation admis-

sions and communications, and for keeping state. In GLWP and

Helia, the reservation service of the source AS is responsible to

fairly distribute reservation bandwidth among end hosts. This re-

sults in a much reduced overhead as compared to Colibri.

9
Assuming sizes for the remaining header fields as follows. GLWP: 𝛽 (4 B), AID (8 B),

tsExp (4 B). Colibri: ResID (12 B), Bw (1 B), ExpT (4 B), Ver (1 B). Helia: D (1 B). Note

that for unidirectional traffic the lenB (2 B) field does not need to be included in Helia

packets.

17

F.3 Security
Commonalities. All three systems have been designed with high

demands on their security properties. In particular, they all pro-

vide botnet-size independence, the property that a legitimate inter-

domain reservation cannot be indefinitely reduced by malicious

ASes requesting a high number of reservations or excessive reserva-

tion bandwidth. Colibri, GLWP, and Helia all rely on a bandwidth

monitor, a replay-suppression system, and a framework to effi-

ciently establish shared symmetric keys. They also have similar

assumptions about the underlying network architecture, e.g., path

stability and path symmetry, and time synchronization.

Assumptions and Requirements. In addition to the assumptions

and requirements shared by all three protocols, GLWP needs a ded-

icated sub-protocol to ensure the consistency of values promoted

by neighboring ASes. Also, GLWP assumes that no two adjacent

ASes are malicious, and that symmetric keys are already established

between every pair of ASes. The latter assumption is necessary,

because every on-path AS authenticates every other on-path AS

during the reservation admission.

Malicious Parameter Announcement. Colibri and GLWP need to

have checks in place to detect ASes that announce malicious param-

eters (e.g., wrong information about their traffic matrices) contribut-

ing to the computation of the path-based reservation bandwidth. In

Helia no such measures are necessary, as the only information an

on-path AS needs to compute the bandwidth is the authenticated

source AS identifier. In particular, this computation does not depend

on any values claimed by other ASes.

Monitoring. As GLWP and Colibri are path-based reservation

protocols, ASes need to rely on a probabilistic bandwidth monitor

to police transit traffic of the (potentially arbitrarily) many reserva-

tion paths that cross their network. As the number of ASes in the

Internet is more stable and most notably way lower than the possi-

ble number of reservation paths, ASes in Helia can deterministically

monitor all reservation traffic. False positives, i.e., misclassifications

of non-overuse reservations as overuse reservations, and false nega-

tives, i.e., misclassifications of overuse reservations as non-overuse

reservations, are therefore inherently impossible in Helia.

DDoS against Reservation Services. In GLWP and Colibri, the

reservation services constitute a target for DDoS attacks that at-

tempt to overwhelm the admission procedure, which would cause

the service to drop legitimate requests. In contrast, bandwidth ad-

mission in Helia happens at line rate, and hence a malicious request

flood does not have an influence on honest requests–no honest

request is ever dropped due to lack of computational resources.

Suitability for DoCile. DoCile [43] is a framework for the protec-

tion of key exchanges and reservation setup requests from denial-of-

capability (DoC) attacks. Consider a source AS 𝑆 that wants to fetch

symmetric keys from all ASes on a certain path 𝑃 , in order to subse-

quently establish a reservation over that path. DoCile protects this

communication by having AS 𝑆 iteratively fetch keys and establish

a reservation on every sub-path of 𝑃 . First, a key is requested from

the first on-path AS 𝑂1, which is used to establish a reservation

for the path [𝑆 ,𝑂1]. Then, protected through this reservation, AS 𝑆

requests a key from the second on-path AS 𝑂2 and subsequently

establishes a reservation over the path [𝑆 , 𝑂1, 𝑂2]. This process is

repeated until ultimately a reservation over 𝑃 is established. Imple-

menting DoCile in GLWP or Colibri would be inefficient, as a new

reservation has to be created for each sub-path. In Helia, however,

a flyover reservation can be reused in multiple DoCile iterations.

To provide the highest guarantees possible, DoCile assumes that

the reservation system in use provides bidirectional reservations.

Bidirectional reservations are only available in Helia, but not in

GLWP and Colibri.

F.4 Complexity
The flyover computation in Helia is based on the idea that band-

width between two interfaces is split equally among the requesting

ASes. Desirable properties such as non-zero bandwidth sizes or

no-over-allocation directly follow from this computation. In GLWP,

the bandwidth size computation is based on the GMA [13] algo-

rithm, and Colibri relies on N-Tube [45] for this purpose. In contrast

to flyovers, GMA and N-Tube rely on a theoretical foundation that

is quite complex. The simplicity of the flyover calculation is the rea-

son that Helia can achieve its high admission and traffic forwarding

rates, and that our bandwidth monitoring system can accomplish

100% precision. We consider low complexity important for reason-

ing about Helia’s security and to achieve wide-spread adoption in

a real-world deployment.

G DEMAND-AWARE FLYOVERS
The flyover bandwidth computation algorithm presented in Eq. (2)

equally shares the available capacity among all requesting ASes.

For an AS requesting a flyover it is thus not possible to express its

bandwidth demands. This demand-agnostic design enables highly

efficient bandwidth admission directly at the border router, while

still providing sufficiently high reservation bandwidths to run the

critical applications targeted by our system. However, flyover sizes

can also be computed in other ways, in particular to also take into

account bandwidth demands. We designed Helia to be independent

of the concrete flyover computation: the function getBandwidth()
used in Algorithm 1 can be instantiated with a custom algorithm.

Concretely, to achieve demand-aware flyover reservations, one

might add an authenticated bandwidth demand 𝛽
dem

(as well as the

minimal acceptable bandwidth 𝛽𝑚𝑖𝑛) in the setup request (§ 4.3),

and substitute getBandwidth() with, e.g., the demand-aware N-

Tube algorithm that is also used in Colibri. The setup request would

therefore need to be adapted as follows:

Auth𝑖 = MACK𝑖→𝑆
(tsReq, 𝑅𝑖 , 𝐵𝑖 , 𝛽dem, 𝛽𝑚𝑖𝑛)

SetupReq = 𝑆, tsReq, 𝛽
dem

, 𝛽𝑚𝑖𝑛, (𝑅𝑖 , 𝐵𝑖 ,Auth𝑖)
∀𝑖 ∈ 𝐴 ⊆ {1, . . . , ℓ}

Other packet fields or computations, e.g., the calculation of the

authenticator (Eq. (3)) or the RVF (Eq. (5)) do not need to bemodified.

The N-Tube algorithm readily computes AS-local interface-pair

reservations, which Colibri further assigns to specific paths in the

form of segment reservations. The computation of interface-pair

reservations makes N-Tube a viable flyover algorithm. Its fairness,

security, and performance properties have already been extensively

evaluated [2, 45]. Due to its comparably large performance and state

overhead, it may need to be deployed in a dedicated service inside

18

the AS instead of being executed at the border router. However, in

contrast to Colibri, no segment and end-to-end reservations need

to be computed and stored.

Note that even demand-aware protocols such as N-Tube implic-

itly become demand-agnostic when the aggregate demand exceeds

the available capacity: Shrinking existing reservations to a fair

share is necessary to allow all parties to communicate. Finally, one

of Helia’s distinguishing features is that every AS can deploy its

own flyover algorithm (possibly even at the granularity of single

interface-pairs), it does not need be globally agreed upon. This

additional algorithmic agility further eases deployment and favors

diverse business cases.

19

	Abstract
	1 Introduction
	2 Background
	2.1 Traffic Engineering & Critical Applications
	2.2 Secure Bandwidth Reservation Systems
	2.3 Technical Building Blocks

	3 flyover Reservations
	3.1 Definition
	3.2 Computing Rho
	3.3 Composing Flyovers

	4 Helia
	4.1 Overview
	4.2 Network Model
	4.3 Reservation Setup
	4.4 Data Transmission
	4.5 Deployment Considerations

	5 Are flyovers large enough?
	5.1 Reservation Algorithms
	5.2 Simulation Setup
	5.3 Results
	5.4 Discussion

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Testbed
	6.3 Results

	7 Security Analysis
	7.1 Threat Model
	7.2 Attacks against Reservation Admission
	7.3 Attacks against Reservation Traffic

	8 Discussion
	8.1 Emerging Properties
	8.2 Reservation Billing

	9 Related Work
	9.1 GLWP
	9.2 Colibri
	9.3 Other Bandwidth Reservation Systems

	10 Conclusions & Future Work
	Acknowledgments
	References
	A Other Reservation Computations
	B Supported Network Architectures
	C Computing the Number of Requesting ASes
	D Correctness proofs
	E Token-Bucket without Counter
	F Comparison
	F.1 Flexibility
	F.2 Performance
	F.3 Security
	F.4 Complexity

	G Demand-Aware Flyovers

