
MONDRIAN: Comprehensive Inter-domain
Network Zoning Architecture

Jonghoon Kwon
ETH Zürich

jong.kwon@inf.ethz.ch

Claude Hähni
ETH Zürich

claude.haehni@inf.ethz.ch

Patrick Bamert
Zürcher Kantonalbank
patrick.bamert@zkb.ch

Adrian Perrig
ETH Zürich

adrian.perrig@inf.ethz.ch

Abstract—A central element of designing IT security in-
frastructures is the logical segmentation of information assets
into network zones sharing the same security requirements and
policies. As more business ecosystems are migrated to the cloud,
additional demands for cybersecurity emerge and make the
network-zone operation and management for large corporate
networks challenging. In this paper, we introduce the new concept
of an inter-domain transit zone that securely bridges physically
and logically non-adjacent zones in large-scale information sys-
tems, simplifying complex network-zone structures. With inter-
zone translation points, we also ensure communication integrity
and confidentiality while providing lightweight security-policy
enforcement. A logically centralized network coordinator enables
scalable and flexible network management. Our implementation
demonstrates that the new architecture merely introduces a few
microseconds of additional processing delay in transit.

I. INTRODUCTION

Network zoning has long been an essential part of the
Internet security infrastructure, which logically partitions net-
work and information assets into disjoint segments that share
the same security requirements and policies, and functional
similarities. Zones define the network boundaries and their de-
fense requirements by explicitly stating the entities populating
the zones, the entry points into the zone, and how traffic is
monitored and filtered at these entry points. Informally, these
zones are realized by a virtualized separation at layer 2 (e.g.,
IEEE 802.1q [28]) with firewalls at higher levels governing
data transfers between zones [40].

Each zone is associated with a security level. By default,
a host within a zone with a low security level cannot access
a higher security zone. To realize access control based on the
security level, firewalls are considered to be the most viable
technology. However, operating firewalls in large enterprises is
often challenging for network operators and security architects.
The access control for network zones might be dynamic, which
requires complex management schemes to accommodate a
myriad of policies. While there are advanced technologies
such as virtual firewalls [3], [12], distributed security enforce-
ment [38], [69], and Unified Threat Management (UTM) [53],
newly designed to enforce access control polices in extremely
dynamic networks, network zone management and modeling
still remains cumbersome [21], [54].

Bridging geographically distant network zones is very
challenging today. In general, network zones are created not
only for security purposes but also because of geographi-
cal, operational, or organizational factors. Large enterprises
with geographically distributed branch networks, and possibly
collaborative partners’ networks need to be interconnected.
Given that distant network zones exchange information over
an untrusted network (e.g., the Internet), there is a risk
that the communication exposes security-sensitive informa-
tion during transit. To mitigate such threats, administrators
leverage additional security mechanisms (e.g., IPsec [32] and
TLS-VPN [55]) which ensure confidentiality and integrity of
the transmission over the untrusted network by encrypting
and authenticating the data with shared cryptographic keys.
Nonetheless, these technologies bring forth new challenges
such as management scalability [19] and compatibility issues
with other security solutions [34]—universal agreement with
business partners on building collaborative security infrastruc-
ture is often problematic.

MONDRIAN is a new network zoning architecture that
secures inter-zone communication—which operates on layer
3, supporting heterogeneous layer 2 architectures—while en-
suring scalable cryptographic-key management and flexible
security policy enforcement. MONDRIAN flattens the current
hierarchically-complex network zone topology into a collection
of horizontal zones connected to a unified security gateway,
called Zone Translation Point (TP), thus simplifying large
enterprise networks. By interconnecting zones through TPs,
complex zone restructuring operations become easier with
respect to new zone initializations or zone migrations. The
TP ensures source authentication, zone transition authoriza-
tion, and illegitimate access filtering by acting as a secure
ingress/egress point for network zones. A logically centralized
control unit provides management scalability on zone classi-
fication and policy enforcement, and mediates cryptographic
key establishment. Since poor security practices, complicated
controls, and rushed updates cause security breaches [37], the
management scalability and flexibility offered by MONDRIAN
provide strong, transparent, and efficient controls, minimizing
human error and enhancing the security of enterprise networks.

A secure zone transition is performed in three steps: i) the
TP acquires access policies for each network zone from its
controller, ii) the TP issues a cryptographically protected au-
thorization token if a given zone transition request is permitted,
and iii) the network forwards only packets with a valid token.
By leveraging the notion of secure tunneling between two
endpoints (i.e., a pair of local and remote TPs), confidentiality

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021, San Diego, CA, USA
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24378
www.ndss-symposium.org

and integrity of the zone transition packets are ensured, while
keeping the overhead of the authentication process small. For
scalable key management, we employ a key establishment
system that enables dynamic key derivation and ensures perfect
forward secrecy.

We provide an implementation of MONDRIAN that ensures
secure zone transition for both intra- and inter-domain commu-
nication at line rate, while requiring no network-stack changes
from end hosts. We extensively evaluate this implementation to
demonstrate the practical viability of MONDRIAN. The results
show that the TP introduces negligible processing delay; less
than 500 ns of additional delay for intra-domain zone transition
and approximately 2.5 ∼ 3µs for inter-domain zone transition.
We further provide in-depth analyses for security and practical
considerations.

The main contributions of this paper are the following:

• We introduce MONDRIAN, a new security architecture
that enables secure, flexible and viable network zoning
and inter-zone communication for large enterprise
networks.

• We introduce an inter-domain transit zone that simpli-
fies the current hierarchical zone structure, enabling
flexible network zone management.

• We implement MONDRIAN as an opensource project.

II. NETWORK ZONING

Using a case study we explore how network zoning is
realized in modern enterprise networks, and later we derive
the main challenges we confront.

A. Case Study

Most enterprise networks have embraced the notion of
layered security classification, that can be broadly split into
intranet, extranet, and opennet [54]. The opennet is the least
trusted network (e.g., the Internet) which is an inhospitable
region where live threats exist, whereas the intranet is the most
trusted network hosting business-critical systems and sensitive
information. Since the intranet has rigorous access control
mechanisms to protect information assets from exposure to
the opennet, enterprises are forced to operate another security
layer (extranet, also known as demilitarized zone or DMZ) in
between, which exposes the publicly accessible services to the
opennet, while reducing the attack surface.

Over time, the layered network structure has become
more sophisticated [45] due to extreme changes in network
environments—diverse demands from customers, partners and
employees accessing enterprise networks with a variety of
devices. As a result, many enterprise networks comprise a large
number of zones defined by operational, organizational, and
most importantly security factors. Figure 1 depicts a real-world
use case for network zones running on inter-domain level with
multiple involved autonomous systems (ASes). Zone transition
can be categorized into three main types.

Intra-domain Zone Transition. Within a local network,
multiple devices such as servers, databases, and hosts are
connected through network switches. These devices are as-
signed with a unique IP address that belongs to a logically

Fig. 1: Network zoning use case for large enterprises. Network
zones are realized with heavy use of security middleboxes
(e.g., Firewalls).

isolated network zone. These zones commonly consist of
multiple subnets, often realized with a layer 2 virtualization
technology (e.g., VLAN). Each zone is protected by a set
of security middleboxes, e.g., firewalls, intrusion-prevention
systems (IPS), and intrusion-detection systems (IDS), which
enforce predefined security policies for all traffic passing
through.

To maintain the zone-based trust model, an access per-
mission to one zone is not considered to be valid for other
zones. That is, an entity must obtain access permissions from
all zones on the path when accessing a non-adjacent zone. This
trust model however often complicates policy management
and enforcement, especially for large enterprise networks. To
resolve this complication, the current practice introduces the
notion of a dedicated zone transition point, called Transit Zone.

A Transit Zone acts like a patch panel allowing zones to be
interconnected without the need of a dedicated link between
each pair of zones. The Transit Zone sits in the middle of
multiple zones and mediates access between zones that need
to communicate with each other. It is commonly comprised of
only forwarding devices (e.g., switches), interconnecting the
attached zones via various ingress/egress points on which se-
curity middleboxes enforce the security policies. In a nutshell,
the Transit Zone reduces the depth of zone hierarchies and
thus simplifies the network zone design and management.

Inter-domain Zone Transition. To ensure that geographically
distributed zones can securely communicate with each other,
enterprises employ various networking technologies. The most
common choice is connecting two remote sites with a physical
leased line, (e.g., Layer 2 circuit). Enterprises can lease these
lines from Internet service providers and make use of them
to bridge local networks. However, purchasing leased lines is
costly and might raise trust issues towards the service provider.

An alternative is a virtual private network (VPN). A VPN
uses encryption and authentication to create a virtual tunnel
between two local networks, thwarting information leakage
during transmission over the public Internet. While a VPN
can achieve data confidentiality, typically yet another layer
of overlay protocols is required to achieve virtual separation
of zones. The use of such overlay protocols, however, has
the disadvantage that all interconnected sites need to deploy
the same protocol since such protocols generally do not offer
interoperability.

2

Traffic from the Internet. Traffic not originating from coop-
erative (trusted) networks can be classified into the following
three types: i) public traffic, ii) authorized traffic, and iii)
malicious traffic. The first case covers customers who access
the enterprise’s public services, e.g., Web servers. This traffic
in general ends up at the demilitarized zone (DMZ) hosting
only public services that require exposure to the Internet.
The second case refers to the traffic coming from temporarily
authorized devices. For example, a legitimate employee outside
the enterprise’s premises—working from home with a personal
device—may get a temporal permit to access restricted zones
via a VPN. The last category comprises attack packets which
are to be filtered by the security middleboxes in the frontline
of defense.

B. Challenges

Secure Zone Transition. Transmitting security-sensitive data
between zones in different physical locations (e.g., data center
to branch site) over the public Internet poses a challenge.
Security level information is lost in transit, requiring that the
data is re-authenticated and filtered again on the receiving
site even though source and destination could be part of the
same logical zone. Today’s overlay protocols are often used to
overcome the restriction of losing security level information
in transit. This however introduces new challenges: difficulties
in deployment per zone, computational overhead, and poor
management scalability.

Interoperability. To support seamless interconnection between
security zones in different networks, we consider interoperabil-
ity as another challenge. Even if security-level information per-
sists in transit, different zones might not be built on the same
internal protocols. For example, large enterprise networks often
lease a physical network infrastructure from Internet service
providers or cloud service providers, in which a different layer-
2 protocol is running (e.g., Shortest Path Bridging (SPB) [27]
vs. Trill [48]). The use of different protocols eventually results
in the incompatibility of zone translation and makes it difficult
for end systems in different zones to communicate with each
other seamlessly.

Management Scalability. In current local network zoning
architectures, administration is being considered a tedious,
time-consuming, and labor-intensive task. For example, simply
adding a new zone might require existing policies to be
thoroughly reviewed, updated, and re-distributed to the local
network entities. The management complexity dramatically
increases in a wide-area network (WAN) environment.

III. OVERVIEW

This section provides an overview of MONDRIAN. We first
elaborate on the fundamental goals of this research, along
with requirements, and design choices (§III-A). We then sketch
MONDRIAN including a brief introduction of each component
and associated workflow (§III-B). Finally, we describe our
threat model (§III-C) and state our assumptions (§III-D).

A. Design Principles

Goal. The fundamental goal of this work is to build an
architecture that weds local network zoning with inter-domain
routing to achieve lightweight interoperability, secure zone

Fig. 2: An overview of the MONDRIAN architecture. The
inter-domain transit zone interconnects physically and logi-
cally distributed network zones with unified security policy
enforcement.

transition, and incremental deployability—thereby enabling
secure, scalable, and flexible network zoning on a global scale.
That is, an administration domain expresses zone definitions
and corresponding zone transition rules, and deploys the
policies to distributed network entities. These policies force
the network to only forward authorized packets protected by
cryptographically secured authenticators, ensuring secure and
sustainable zone-to-zone communication.

Desired Properties. We consider the following properties to
achieve this goal.

• Data confidentiality: through a constructive approach,
the zone transition protocol ensures that no informa-
tion is exposed while being transmitted via the public
Internet.

• Management scalability: logically centralized orches-
tration empowers network administrators to easily
migrate network topologies, update policies and mirror
abstract network zones into the real network.

• Efficiency: the cryptographic primitives introduce only
minor performance overhead in terms of latency, band-
width, and operational costs.

• Deployability: the MONDRIAN architecture requires
minimal changes to the existing network infrastruc-
ture in order to achieve compatibility. Furthermore,
firewalls and VPN devices at each entry point of every
zone can be replaced with one MONDRIAN gateway,
saving operational costs for the same level of network
security.

B. MONDRIAN Overview

Entities in MONDRIAN. Figure 2 illustrates an overview of
MONDRIAN. Different branch sites of an enterprise are inter-
connected over a WAN (e.g., the Internet). Each site contains
multiple, logically separated zones connected to the single
Zone Translation Point (TP) at the corresponding site. The TP
is a designated gateway for zone transition, operating on layer
3 and interconnecting all zones at a given site of the enterprise
network. All the traffic towards either internal network or
WAN, therefore, passes through the TP. Note that TPs are the
endpoints of our architecture, meaning that minimum changes
to the internal network are required, ensuring compatibility
with modern enterprise environments.

3

The main task of TPs is twofold: first, they ensure that
traffic adheres to a set of allowed zone transitions. For a
packet originating in a zone and destined for another zone,
the transition must be explicitly allowed by a policy. Second,
TPs enable communication across the WAN without losing
previously established security information. To this end, TPs
embed a tag with cryptographically secured zone information
into packets before they leave the internal network. Further-
more, TPs act as endpoints hiding sensitive information, such
as internal addresses and the respective zone binding, from
external entities. We also note that, for a case where zones
with the same security requirements and functionality are
distributed over multiple branch sites (e.g., Zone 1 and 3 in
Figure 2), we consider them as the same logical zone (e.g.,
the same zone identifier). We call this concept zone extension
which is not subject to zone authorization.

A logically centralized controller orchestrates the TPs. The
controller is managed by a single administrative domain, and
thus the operator of the controller manages all the zones behind
the TPs. The controller provides its operator an interface in
which the outline of zone structure and transition policies
can be specified. The explicit network configuration is then
distributed to the TPs via a secure control channel to enforce
the configuration at the individual premises.

Communication Flow. MONDRIAN enables secure zone tran-
sition over WAN as follows:

1) Network administrators first establish an IP-zone map
and their transition policies, which represents a virtual
network configuration that explicitly specifies reach-
ability, and upload them to the logically centralized
controller.

2) Each pair of TPs exchanges symmetric keys to es-
tablish a secure channel. The key is being updated
regularly through a state-of-art key management and
distribution system that protects the secrecy of the
zone transition while ensuring high-speed data trans-
mission.

3) The on-site TP inspects all the packets to be trans-
mitted to another zone. The TP acquires the corre-
sponding zone transition policy from the controller
and verifies if the transmission is authorized.

4) If a packet is authorized, the TP looks up the re-
spective end-point TP, encrypts the packet along with
the corresponding zone transition information, and
forwards it across the WAN. Otherwise, the packet
is dropped.

5) The remote-site TP then decrypts the packet and
forwards it according to the enclosed zone transition
information. The receiving TP could also verify the
validity of the zone transition.

C. Threat Model

We consider a threat model in which attackers reside either
on-premise (i.e., compromised end hosts) or are located outside
of the cooperative networks. The goal of attackers is to access
unauthorized zones to exfiltrate information assets, or disrupt
networks and services. To achieve this goal, attackers can use
the following strategies:

Unauthorized Access. Attackers may disguise as authorized
entities to blind the security middleboxes and access restricted
zones. A more sophisticated attack is to override security
systems by directly injecting tampered policies.

Denial-of-Service. Here, the goal is to disrupt the target
networks or services. Attackers can sabotage the core network
systems, for example, by flooding security middleboxes that
perform deep packet inspection. This might then lead to
network performance degradation, causing denial-of-service
for legitimate clients.

D. Assumptions

Public Key Infrastructure. A given enterprise network has a
public key infrastructure (PKI). That is, the enterprise creates
a trust model for its network infrastructure, acts as a trusted
certificate authority (CA), and issues certificates for the core
systems. Entities can retrieve and verify the public keys of the
core systems. Open source projects, such as EJBCA [15] and
OpenXPKI [46], are available for setting up enterprise-grade
PKIs.

Secure Cryptography. Cryptographic primitives we use in
MONDRIAN are secure; authenticity and secrecy remain intact
unless the cryptographic keys are exposed.

Time Synchronization. Core entities within the cooperative
network have loosely synchronized system clocks with a
precision of hundreds of milliseconds (e.g., using network time
protocol). Time synchronization is mainly used to constrain the
validity of cryptographic keys.

Secure MONDRIAN Operation. All MONDRIAN entities in-
cluding controllers and TPs are operating securely (i.e., not
controlled by the adversary), and the security policy is correct.

IV. ARCHITECTURE

In this section, we present the MONDRIAN architecture
and the underlying protocols in detail. Later, we describe our
key-establishment system that enables rapid key derivation and
distribution in large networks.

A. MONDRIAN Bootstrapping

The bootstrapping procedure is performed when a new
zone or a new remote site (a group of zones along with a
TP) joins the network.

Zoning Policy. In MONDRIAN, an IP subnet corresponds
to exactly one network zone, such that the zone identifier
(zoneID) a host belongs to can be identified by the host IP
address. Ideally, IP addresses of each host in an enterprise
network are unique, ensuring inter-zone (inter-VLAN) routing.
Nonetheless, the same private address spaces with network
address translation (NAT) devices could be a part of different
zones, and they are distinguishable by their translated IP
addresses (see §VIII-A). The way zones are described here cor-
responds to how enterprises typically segment their networks
today, upholding backward compatibility and consequently
deployability. Furthermore, MONDRIAN does not depend on
the specific layer 2 protocols used at each site.

Every zone is under one administration domain, e.g.,
company A. In case multiple companies want to collaborate

4

by sharing certain network zones, such as company A allows
access to zone A from company B’s zone B, it is company
A that creates and registers the zones transition policy to A’s
controller. Company B simply follows the policy.

Zone Transition Policy. To allow network operators to ex-
plicitly express their zone transition policies, we consider both
denylist and allowlist-based policy definition. This is a mature
approach commonly used in modern network management
systems, enabling flexible and agile orchestration of complex
networking policies. The following depicts the zone transition
policy format:

< zoneIDdst, portdst, zoneIDsrc, portsrc, proto >

⇒ < action >
(1)

action determines the corresponding action for the given
source and destination zone pair, e.g., forwarding, drop,
and established. Similar to iptables rules, forwarding
would allow any incoming packets from the source zone
whereas drop discards all traffic. established allows
incoming traffic for all established connections.

The five-tuple expression allows network operators to de-
fine zone transition rules at application granularity. For exam-
ple, hosts can reach a Web service running on servers in DMZ
(e.g., <DMZ, 443, *, *, https>⇒ <forwarding>),
while another policy restricts access to other services avail-
able on the same servers (e.g., <DMZ, *, *, *, *> ⇒
<drop>). In rule conflict, longest tuple matching is performed
to select an entry from a policy table; more precisely described
rules have priority. The application-level policies maximize the
flexibility of the network zone configuration.

Translation Point Initialization. A TP is initialized when a
new remote site opens, prior to any communication between
zones. The initialization process has mainly two goals: i)
bootstrap a secure channel between TP and controller to
exchange control-plane messages, and ii) establish tunnels with
other TPs for data transmission.

Upon bootstrap, a TP performs a client-authenticated TLS
handshake with its controller to exchange certificates, and
agree on a cipher suite and a symmetric key. The TP finds the
corresponding address in its configuration file. This means that,
prior to first use, there needs to be an out-of-band setup where
the TP is configured. This can either be done by the admin-
istrator of the controller shipping a pre-configured machine to
the new remote location or by the remote location setting up a
machine and granting the administrator management access to
the given machine. Bootstraping TPs with multiple controllers
will be described in §VIII-C with practical considerations such
as controller discovery, TP migration, and policy consistency.

The controller synchronizes with TPs to keep their list of
other TPs in the network up-to-date. To this end, the controller
frequently pushes a list of relevant TPs with which a TP can
communicate. This can be done either regularly (e.g., on a
daily basis) or occasionally (e.g., when a new TP joins the
network). TPs then establish a secure channel with new TPs.
To prevent TPs from using a stale TP list, the shared TP list
is associated with a time to live (TTL) value.

We ensure source authenticity of the MONDRIAN entities
by leveraging PKI-based identities. The TPs and controller

Fig. 3: Protocol details for data forwarding. The controller
frequently updates TPs with the latest zone transition policies.

verify each other, preventing: i) a legitimate controller pushing
information to an unauthorized TP, and ii) a legitimate TP
connecting to a bogus controller or TP under an attacker’s
control. The main idea behind the source authenticity is that all
the TPs and controllers obtain certificates for their IP address
from a public key infrastructure (PKI). The administrator of
the entities (e.g., an enterprise) runs a certificate authority, and
issues the certificates before an entity bootstraps.

B. Protocol Description

We now describe how two end hosts within different
remote sites are able to communicate. Figure 3 illustrates a
protocol-level design including authorization, forwarding, and
verification. A detailed header design follows.

Zone Transition Authorization. End hosts behind a TP
operate as they normally would when they reside in a local
network connected to a commodity gateway. That is, without
any acknowledgment on network changes, a sender HS sends
a packet to the receiver HR. If HS and HR are residents
of the same subnet (namely the same zone), the packet will
be directly steered to the destination by the local forwarding
devices. If HR is in a different subnet (or a remote site)
however, the packet is first delivered to TPS since TPS is
the gateway of HS (1 in Figure 3).

To determine if the packet is allowed to be forwarded to
the given destination zone B, TPS needs an explicit zone
transition policy for the given source and destination pair.
Ideally, the policy is cached in the TPS’s zone transition table.
In case the cache misses, TPS acquires the policy from the
controller C as follows:

1) TPS requests a zone transition policy from C (2):

TPS → C : HR | HS (2)

2) C replies with the zone transition policy (3):

C → TPS : ZR | ZS | rule | TPR | ExpT ime (3)

The controller consults the zone transition policy to see if
the packet is allowed to be forwarded to HR, more specifi-
cally to destination zone ZB . To this end, the controller first
checks the corresponding zone information, and matches it
with the zone transition rules (Equation 1). The authorization
result is then delivered to the requesting TP along with the
corresponding source and destination zone identifiers (ZR and

5

ZS , respectively), the destination TP address (TPR), and the
expiration time (ExpT ime) for the policy. ExpT ime can be
an arbitrary number, but we consider it to be a small number
used for policy freshness.

Data Forwarding. The TP discards the packet (Host Unreach-
able) if rule = drop. Otherwise, the TP looks up its routing
table and transmits the packet∗. There exist two types of zone
transition cases: one for local (same-site) zone transition and
another for remote zone transition as described in §II-A. For
the local zone transition, the TP simply rewrites the Ethernet
header by following the local layer 2 protocol, and forwards
it through a corresponding network interface. Since the local
network is assumed to be trustworthy, no additional packet
processing is necessary apart from the authorization.

For the remote zone transition, the TP is responsible for
the secure transmission of the packet towards the destination
TP (4). Recall that it is important for the inter-domain
zone transition packet to keep confidentiality and integrity in
transmission. We therefore leverage secure tunneling, i.e., the
IPSec tunnel mode [31], [32], meaning that the original packet
is wrapped, encrypted, authenticated, and attached to a new IP
header. The new packet layout is formed as follows:

EIP = {HR | HS | payload}K , (4a)
AT =MACK(ZR | EIP), (4b)

TPS → TPR : TPR | TPS | ZR | AT | EIP. (4c)

The field name, Encrypted original IP payload (EIP), is self-
explanatory. The original packet including IP header and pay-
load is encrypted with a secret key K pre-shared between TPS

and TPR. By encrypting the original packet and encapsulating
it into the new IP datagram, we ensure confidentiality on
the original payload as well as the host identities. We also
introduce an Authentication Token (AT) which is placed in
front of the EIP and contains a message authentication code
(MAC) covering EIP and the destination zone identifiers. AT
provides integrity over the entire packet except the outer IP
header field which could be modified in transit.

The main difference to the Encapsulating Security Payload
(ESP) in IPSec tunnel mode is that, rather than having site-to-
site symmetric keys, we use site-zone pairwise keys. That is,
the keys used for every triplet of {TPsrc | TPdst | zoneIDdst}
differs, providing a variety of unique symmetric keys even
for the same pair of TPs. In addition, by conveying only
zoneIDdst in the header, zone pair information, which could
lead to the potential disclosure of the zone structure and their
transition rules, is not exposed.

Verification. The destination TP performs two steps of verifi-
cation upon packet arrival: authentication and authorization. By
extracting the quartet information from the header, TPR first
derives the corresponding symmetric key and recalculates AT
to see whether the MAC matches the original AT value. This
step is used to verify packet integrity as well as authenticity
since only the two parties can derive the same key. If the match
fails, either the packet integrity is compromised or source
authentication failed, causing the packet to be discarded.

∗ Note that the TP is not involved in the routing decision; the TP is an
add-on application running on top of the legacy gateway, performing the zone
transfer policy check and tunneling between the gateways. Packet routing and
forwarding is independently done by layer-2 and 3 protocols.

To further verify authorization, TPR obtains HS and HR

by decrypting EIP, and verifies if HS is authorized for the
zone transition towards HR. Similar to TPS , TPR might send
a request to its controller (5) to acquire the authorization
policy (6) when the policy is missing in its zone transition
table (Equations 2 and 3).

In principle, MONDRIAN is constructed under a single ad-
ministrative domain such that all the core entities, i.e., TPs and
controllers, are trustworthy. One of the main advantages of this
trust model is that the authorization check performed by the
sender side TP is also trusted by the receiver-side TP, therefore
not requiring verification of the zone transition authorization.
Upon receiving a packet, TPdst checks the authenticity of
the packet, decrypts EIP, and forwards the original IP packet
to the destination host. This trust model simplifies the entire
verification process significantly by omitting the authorization
step which requires an additional challenge-response protocol
to the controller, improving practicality for TPs running at
small branches limited in operational resources.

C. Key Management

In order for the TPs to create and verify authentica-
tors based on symmetric cryptography we need a scheme
to distribute keys amongst them. Ideally, the keys used for
every triplet of {TPsrc | TPdst | zoneIDdst} should be
different. Additionally, ease of key management is a major
concern as key distribution mechanisms in today’s Internet,
such as IKE [39], [22], [30], are complicated and introduce
management overhead; the number of symmetric key pairs
increases quadratically with the number of zones, which ham-
pers scalability. To alleviate these problems we propose a key
management system based on PISKES [56].

Major modifications to PISKES for MONDRIAN key man-
agement stem from the following requirements: first, in the
context of network zoning, we require a high degree of
confidentiality on top of authenticity to protect sensitive in-
formation. PISKES mainly targets authenticity for network
entities, not confidentiality. Second, it is unlikely that an AS
wants to have a dedicated key-establishment service for each
enterprise, while PISKES’s key establishment relies on the
asymmetric key pair issued to each AS. The AS-driven key
establishment approach would require additional management
overhead and deployment for ASes. Third, MONDRIAN re-
quires key management at zone granularity, while PISKES
is intended to support key exchanges at a finer granularity
(e.g., per host or application). Thus, design simplification also
simplifies the architecture, reducing functional complexity and
enhancing management scalability.

Driven by this, we redesign the PISKES’s key-derivation
architecture removing the AS dependency (i.e., the AS keys
and the dedicated key servers at each AS), meaning that an
enterprise has full control over distributed network zones and
does not need to trust other ASes for inter-zone networking.
Additionally, we simplify the key derivation to work at zone
granularity, supporting faster key derivation while providing
the same level of security.

Key Hierarchy. PISKES introduces a key hierarchy that allows
services to efficiently derive symmetric keys. We adapt the

6

concept to support key derivation in the context of network
zoning. The key hierarchy is as follows:

• 0th-level key: STP is the secret value generated by
each TP individually.

• 1st-level key: a TP derives different symmetric keys
for other TPs from the local secret value STP . The
derived symmetric keys are called first-level keys and
are calculated as

KA→B = PRFSTPB
(A), (5)

where B stands for the receiving TP address and PRF
is a secure pseudo-random function. Since only one of
the two parties can derive this key, it is necessary for
the other party, in this case A, to fetch the shared
symmetric key by contacting B†.

• 2nd-level key: from the first-level keys, second-level
keys are derived to provide diverse symmetric keys
for each zone within the same source and destination
TP pairs. The second-level keys are calculated as

KA→B:Z = PRFKA→B
(Z). (6)

Z is the zone ID of the target zone where the desti-
nation host resides.

This hierarchical key structure is beneficial in multiple
aspects: first, it delivers key diversity. Since a second-level
key is bound to a destined zone, it enables each zone to
have different keys even for the same pair of source and
destination TPs. Second, it is easy for TPs to efficiently derive
the symmetric keys as all the required inputs to derive the
key (i.e., local and remote TP address, and destination zone)
are contained in the packet header. In particular, a remote
TP thus can derive the key directly from the packet header
without a memory lookup. Finally, since all second-level keys
are derived directly from first-level keys, the system scales
linearly with the number of TPs, not the number of zones,
achieving scalability.

Bootstrapping Keys. Each TP randomly generates a local
secret value STP , the root of the TP-specific key hierarchy.
Since the first and second-level keys are derived from the secret
value recursively, they inherit the randomness and secrecy of
STP . We suggest using a true random number generator. The
randomly generated secret value never leaves TP premises and
is frequently renewed, e.g., on a daily basis, to achieve perfect
forward secrecy [26], [55].

Key Establishment. Key establishment precedes the first
data transmission. To establish a first-level key, the source
TP initializes the key exchange protocol by sending a key
exchange request:

req = A | B | V alT ime, (7a)
TPA → TPB : req | {H(req)}K−A , (7b)

where V alT ime represents the validity period of the request.
The hash value of the request is signed with the requesting
TP’s private key K−A , such that the receiving TP can verify the
authenticity of the request packet. Recall that, for authenticity

†We note that, in contrast to PISKES, the arrow direction in the notation
indicates the communication direction for which the key is used.

of MONDRIAN entities, each TP verifies the public key based
on a certificate issued by the trusted CA, i.e., the controller.

Upon receiving the key exchange request, TPB verifies the
source authenticity and checks the validity of V alT ime. If the
request is valid TPB derives a first-level key from the local
secret value STPB

and replies back to the requester. The reply
packet is formed as follows:

KA→B = PRFSTPB
(A), (8a)

rep = {B | KA→B | ExpT ime}K+
A
, (8b)

TPB → TPA : rep | {H(rep)}K−B , (8c)

where ExpT ime denotes the expiration time of the first-level
key, K+

A is the TPA’s public key used for encryption, and
K−B is the TPB’s private key to sign the reply packet. Finally,
the requesting TP verifies the validity of the reply packet and
caches KA→B until it expires.

Ideally, a TP prefetches all the first-level keys for other
TPs it wishes to communicate with. The TP acquires the list
of active TPs from its controller and initiates the key exchange
protocol for these TPs in advance. This is feasible because the
number of TPs for an enterprise is surely limited; for example,
the total number of branches that the Bank of America has in
2019 is approximately 4.6k [62]. Each branch would need at
least one TP, which means that a TP needs to prefetch more
than 4.6k first-level keys. Nonetheless, on-demand key fetching
is also possible. In particular, when the current first-level key
expires in the middle of on-going data transmission or a new
TP joins, a key exchange is initiated.

TPs are also responsible for second-level key establish-
ment. However, this does not require any key exchange pro-
tocol. Upon data transmission, source and destination TPs are
able to dynamically derive the same second-level key for the
destined zone from the shared first-level key as shown in
Equation 6.

V. IMPLEMENTATION

We now describe the implementation details of each com-
ponent in MONDRIAN. We implemented a prototype that
comprises a software-based gateway and controller. The main
development language is golang 1.14.1 [20], and we used
SQLite3 [61] for the database. To secure control-plane chan-
nels, we also leveraged TLS 1.3 [55]. The prototype is publicly
available [52].

Our implementation builds on top of the SCION archi-
tecture [49]. The implementation decision has been driven
by the following reasons: i) SCION provides network pro-
grammability along with the separation of control and data
plane, ii) SCION comes with an embedded PKI system that
can be utilized for our key management system, and iii) the
opensource version of the PISKES system [51] as well as a
software-based gateway working with SCION are available,
thus enabling rapid prototyping.

A. Translation Point

To implement a prototype of TP, we extend the SCION-IP
Gateway (SIG) [59]. The main functionality of the SIG is to
encapsulate legacy IP packets into SCION packets and vice

7

Fig. 4: An overview of the modularized TP implementation.
Major usecases are also indicated with colored arrows.

versa. In this context, a SIG acts as a gateway between an
internal (legacy) network and an external (SCION) network.
Since TP is designed as a gateway that bridges LAN traffic
over WAN—the underlying inter-domain routing protocol is
not relevant here—the functional aspects of TP meets with
what SIG provides. To be integrated with SIG, TP mediates
between the UNIX socket and SIG socket, and performs zone
transition authorization and verification for all incoming/outgo-
ing packets. Figure 4 illustrates the implementation details of
the modularized TP design that consists of three main modules:
i) core module, ii) transition module, and iii) authentication
module.

Core Module. The core module is the main loop of TP. It
reads packets from the UNIX socket and redistributes them to
the corresponding interfaces. More precisely, when receiving
packets from the internal network, it retrieves metadata (further
illustrated in Appendix A) from the raw packet, and hands over
to the transition module. If the zone transition is authorized
(return = 1), the packet is then either forwarded back to the
internal network or, in case the given destination is in a remote
zone, once again handed over to the authentication module to
be prepared for secure transmission. For packets coming from
the external network, TP first calls the authentication module
for verification of the conveyed authentication token. Packets
with invalid tokens are simply discarded.

Transition Module. The main objective of this module is
to check the zone transition rules. The transition module
communicates with its controller to maintain a list of up-to-
date zone transition policies. To this end, it establishes a TLS
channel with the controller, downloads policies, and populates
the database. We implemented the transition module to support
different drop-in options using APIs.

• No-Op: This is for a setup in which no inter-domain
zone transition is required, but only inter-domain zone
extensions.

• Standard: This mode would perform an authorization
check for the requested zone transition based on the
source and destination IP addresses.

• Firewall: If needed, the module could be instantiated
as a full-fledged firewall.

Authentication Module. For inter-domain packet transmis-
sions, the authentication module issues an authentication token
for the packet. It (ideally) caches the first-level keys prefetched

from other TPs and derive a second-level key to generate the
authentication token. Inversely, for packets from other TPs,
it derives the corresponding 2nd-level key and verifies the
delivered authentication token.

Database. The TP’s database consists of three tables: Zone
Table, Zone Transition Table, and Key Table. The zone table
is used to map hosts to their corresponding zones. For a fast
table lookup, we leverage Radix Trees (also known as a trie or
compact prefix tree), cidranger [8] in particular. The zone
transition table is a database in which the zone transition rules
are stored. The two tables are populated with the information
acquired from the controller. The key table is where the shared
first-level keys are stored.

Policy Miss. The current TP’s implementation keeps sessions
associated with a certain remote site. Packets from the interface
are added to the ring buffer of their corresponding session.
Each session keeps a set of worker threads handling its packets.
If there is a policy miss in lookup, the worker handling the
packet will initiate a policy fetch from the controller while the
packet is kept in memory. It could happen that all workers of a
given session are busy handling packets of a stream for which
the policy is missing. This would stall communication with
the corresponding remote entity until the policy is installed
locally. Other sessions remain unaffected.

B. Controller

We implemented the controller as a Web server written in
golang with an SQLite database storing the zone information
and transition policies. The controller offers an API which
allows TPs to fetch zoning information via HTTPS GET
requests.

APIs. The endpoints of interest are: i) /api/get-subnets and
ii) /api/get-transitions. Using these endpoints TPs fetch IP
subnet and zone transition rules. Important to note is that the
controller only hands out the subset of the full set of rules
which is required for the requesting TP to be operational. This
minimizes the size of data transmissions and also improves
security by not disclosing the full network view to every
TP. For every call to the API the controller first verifies the
authenticity of the caller before the request is forwarded to the
corresponding handler. The handlers then load the requested
data from the database and send it to the caller as JSON-
formatted bytes.

Database. The database consists of four tables (Zones, Sites,
Subnets, Transitions), each describing one of the core ele-
ments of the architecture. The database schema is listed in
Appendix B. An abstraction layer written in golang allows the
controller to interface with the database using high-level calls.
The abstraction layer makes use of transactional queries to
ensure consistency even in the event of errors. Furthermore, the
abstraction uses prepared statements for insertions, deletions
and retrievals of data. This protects against SQL-injections and
improves the speed of queries.

C. Authentication Token

The MONDRIAN packet format follows the IP tunneling
conventions of encapsulating the original packet with a new
outer IP header that indicates the two tunnel endpoints as the

8

0 8 32

Type (Reserved) ZoneID

TimeStamp

Nonce

MAC

L2 header L3 header (SCION) AT EIP

Encryption scope

Authentication scope

Fig. 5: MONDRIAN packet format for secure tunneling.

new source and destination. The original packet is encrypted
and then authenticated along with the new packet header fields.
Figure 5 shows the detailed packet structure and coverage of
the confidentiality and integrity mechanisms.

The authentication token starts with one byte of reserved
space for a Type field. While currently unused this will be
useful in the future for distinguishing variations of the authen-
tication token. ZoneID depicts the 3 byte long zone identifier
of the destination zone. It is used by the receiving TP to derive
the correct key for MAC verification and decryption. The next
4 bytes are occupied by a TimeStamp which is added by the
sending TP. It is the Unix time (unsigned 32-bit time_t)
at the point of sending the packet. The receiving TP uses
this timestamp to reject replayed packets. A Nonce (12 bytes)
follows the timestamp.

The nonce as well as the previous three token fields and
the data to be encrypted (EIP) serve as input to a Galois
Counter Mode (GCM) algorithm with an underlying AES-
128 block cipher as cryptographic primitive. This mode of
operation is widely adopted for its performance and to achieve
authenticated encryption with associated data (AEAD). Here
it provides authenticity over the header fields (Type, ZoneID,
TimeStamp) and the data in EIP while EIP additionally also
gets encrypted. The 16 byte MAC generated by GCM is the
last field in the authentication token. Both the nonce and the
MAC sizes follow the guidelines recommended by NIST SP
800-38D [14].

VI. EVALUATION

A. System Benchmarks

We first conduct microbenchmark tests to evaluate the
performance of TP including the key derivation, packet au-
thentication, and authorization. For reproducible evaluation,
we leverage the standard benchmark library testing offi-
cially supported by golang. The benchmarks are conducted on
commodity machines equipped with an Intel i7 2.9GHz CPU,
16GB memory, and a 1GbE NIC.

Authorization. From a technical perspective, the zone transi-
tion authorization is a database lookup consisting of three tree
searches; upon receiving the packet metadata from the core
module, the transition module first looks up the corresponding
zone identifiers for the source and destination addresses, and

then compares them to the zone transition policies. The au-
thorization performance is therefore dependent on the lookup
time of the policy database.

Table I shows the benchmark results of database lookups
for different quantities of policies. Each benchmark ran over
two million iterations and kept the mean value. The autho-
rization check takes approximately 300 to 500 ns per packet,
which is a notable result considering: i) a lookup consists of
three tree searches, ii) the result is from a high-level language
implementation, and iii) the size of the test set is increased by
a factor of 1000. Interestingly, a lookup failure is commonly
24 to 31 % faster than a successful lookup. This implies that
abnormal packets with invalid zone transition requests can be
quickly discarded.

Key Derivation. We investigate the key derivation perfor-
mance. Recall that the key derivation proceeds differently for
sender and receiver (See §IV-C). The receiver directly derives
the first and second-level key from the local secret, whereas the
sender-side key derivation comprises two steps: fetching the
first-level key from the key table and deriving the second-level
key from the first-level key. From a scalability perspective, we
increase the number of stored first-level keys up to 100K.

Table II shows the average key derivation time for the
benchmark tests (each number reported represents the average
of over a million trials). The time duration to obtain the first-
level key at the source TP requires 154∼ 161 ns (key lookup),
while at the destination TP it requires 188∼ 197 ns (key
derivation). While key derivation can be optimized to require
only tens of nanoseconds [56], the high-level golang imple-
mentation achieved a lower performance. The time duration
to derive the second-level key from the first-level key is the
same at source and destination TP, and it amounts to 104 ns.
Since the first-level key also requires a time validity check, the
second-level key derivation is slightly faster. We observe that
for pratical network sizes, the key derivations can be achieved
in less than 300 ns with unoptimized code.

Authentication. The additional processing time for packet
encryption and decryption is shown in Table III. In summary,
it requires approximately 1.5 to 2.5µs to authenticate various
sizes of packets. We note that the processing overhead occurs
for all the tunneling technologies that provide confidentiality
for data transmission. The processing time can be minimized
with implementations using the Data Plane Development Kit
(DPDK) [13] or by leveraging hardware dedicated to crypto-
graphic operations.

B. Network Benchmarks

So far, we evaluated the performance of MONDRIAN oper-
ations. Since a different set of operations needs to be applied
depending on the zone transition usecase, it is also important
to investigate the overall network performance for handling
different types of zone transition packets. We now benchmark
the actual network performance for both intra-/inter-domain
zone transition cases.

Latency Inflation. Figure 6 illustrates the network benchmark
results for the intra-domain zone transition where the source
and destination zones are within the same local network,
such that the TP only performs zone transition authorization.

9

TABLE I: Benchmark results for the zone
transition policy lookup (ns).

of Policies Valid Invalid

100 307 236
1K 405 264

10K 423 293
100K 497 375

TABLE II: Key derivation times for dif-
ferent network sizes (ns).

of Keys 1st key (src) 1st key (dst) 2nd key

100 154 188 104
1K 155 188 104

10K 161 197 103
100K 157 188 104

TABLE III: Processing times for the en-
cryption/decryption (ns).

Packet Size (byte) Encryption Decryption

64 801 623
512 1006 701

1024 1279 796
1500 1557 950

 0

 100

 200

 300

 400

 500

 600

100 1K 10K 100K

P
ro

ce
ss

in
g
 T

im
e

(n
s)

Number of Policies

Valid
Invalid (Src. Zone)
Invalid (Dst. Zone)

Invalid (Policy)

Fig. 6: Processing time for intra-domain
zone transition.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

100 1K 10K 100K

P
ro

ce
ss

in
g
 T

im
e

(n
s)

Number of Branches

64 B
128 B
256 B

512 B
1024 B
1500 B

Fig. 7: Processing time on TPS for inter-
domain zone transition.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

100 1K 10K 100K

P
ro

ce
ss

in
g
 T

im
e

(n
s)

Number of Branches

64 B
128 B
256 B

512 B
1024 B
1500 B

Fig. 8: Processing time on TPR for inter-
domain zone transition.

Since no cryptographic operations are involved, the additional
latency is negligible (as a legitimate zone transition takes
300 ns to 450 ns). There might be an authorization abort due
to a lookup failure that could be caused by the following
three reasons: no source zone ID, destination zone ID, or zone
transition policy. In our prototype, the lookups are performed
sequentially and thus there are different processing overheads
(100 ns to 600 ns) depending on when a lookup failure occurs.
Nevertheless, if there exists no valid zone transition policy,
the packet will be simply dropped and therefore no additional
latency is caused.

For inter-domain zone transition cases, we benchmark
the overall network latency increase during TP operations
including packet parsing, key derivation, authorization, and au-
thentication. Figures 7 and 8 depict the processing delay from
sender-side TP and receiver-side TP, respectively. From the
results, we make the following observations: first, the overall
latency inflation that MONDRIAN introduces is insignificant
(∼ 3µs). Second, MONDRIAN scales well with the size of
the network, i.e., the number of branches. We do not see
any notable performance degradation (≤ 200 ns) for realistic
values. Third, the size of a packet is the primary factor for
the latency increase as expected for all data-plane devices.
The packet size has a small latency increase factor of 1.28
(i.e, 2.4µs to 3.8µs). Lastly, we observe no significant bias
in network performance between sender-side and receiver-side
TPs.

Forwarding Performance. We further investigate the actual
forwarding performance for various packet sizes including a
representative mixture of Internet traffic (iMIX) [43], [60].
Figure 9 shows the results. The baseline is the forwarding
performance without TP operations. The other bars represent
the forwarding performance for intra-domain zone transition
(with authorization only) and inter-domain zone transition
(with authorization and authentication) respectively.

For 64-byte packets which demonstrates the highest packet
rate, and thus requiring the most extreme packet processing,
the intra-domain zone transition exhibits a throughput degra-

dation of only 9%. It also achieves 96 to 100% of throughput
for other packet sizes. These results are expected because
the TP performs only authorization for the intra-domain zone
transition packets, which would increase the processing delay
by less than 500 ns; considering that a typical intra-domain
packet transmission incurs a few milliseconds of latency, the
additional delay is negligible.

On the other hand, the inter-domain zone transition de-
grades the throughput by 30% for the smallest packets. Al-
though the degradation diminishes as the packet size increases,
the performance still degrades by 28% for iMIX traffic. To in-
vestigate the main degradation factor, we compare the amount
of transmitted data (goodput) and the total bits transmitted
including all the network headers (throughputs) as shown in
Figures 10 and 11. From the comparison, we observe the
following: i) the inter-domain zone transition achieves a similar
throughput to the baseline if the extra headers are considered,
ii) the performance degradation is caused by not only the
additional processing delay but also transmission delay of the
extra headers, and therefore iii) MONDRIAN performs similar
to today’s tunneling applications while providing the security
policy enforcement for network zoning.

C. Comparison to the Current Practice

We finally compare MONDRIAN with IPsec (ESP-tunnel
mode) to demonstrate its space and time overhead. Table IV
shows the comparison results.

Time Overhead. We estimate the processing time of crypto-
graphic operations for 64 to 1024-byte packets. For fairness,
we consider the same cipher suite for both approaches, along
with the same size of the cryptographic key (i.e., 128-bit
AES-GCM). Note that the performance of the cryptographic
operations are empowered by AES New Instructions (AES-
NI [57]), a hardware acceleration technology integrated into
many processors nowadays. We make the following observa-
tions: first, MONDRIAN is 68 to 287 ns slower than IPsec
in encryption and decryption. Second, with respect to the

10

 0

 50

 100

 150

 200

 250

64 B 128 B 512 B 1024 B 1500 B iMIX

9
1
 %

7
0
 %

9
6
 %

6
7
 %

9
8
 %

6
8
 %

9
7
 %

8
0
 %

1
0
0
 %

9
4
 %

9
3
 %

7
2
 %

T
h
ro

u
g
h
p
u
t

(K
p
p
s)

Baseline
w/o Authentication
w/ Authentication

Fig. 9: Forwarding performance of TP for
various size of packets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 760 780 800 820 840 860

C
D

F

Goodput (Mbps)

Baseline
w/o Authentication
w/ Authentication

Fig. 10: CDF of goodput for 1400-bytes
of maximum segment size (MSS).

 0

 0.2

 0.4

 0.6

 0.8

 1

 740 760 780 800 820 840 860 880

Throughput including headerC
D

F

Throughput (Mbps)

Baseline
w/o Authentication
w/ Authentication

Fig. 11: CDF of throughput including
extra header fields.

TABLE IV: Time and space complexity in comparison. n
denotes the number of TPs and m represents the number of
zones, where m ≥ n.

Cipher Operation (64 ∼ 1024 Byte) Extra Header
(Byte)

Memory
(Byte)

Encryption (ns) Decryption (ns)

MONDRIAN 142 ∼ 513 114 ∼ 395 56 16× n2

IPSec 46 ∼ 226 46 ∼ 213 58 16×m2

packet size increase, IPsec shows a significant increase in
the processing time, i.e., up to 400%, while MONDRIAN
shows an increase of 200%. This is a reasonable performance
considering that our current implementation relies on an open-
source cryptography library.

Space Overhead. IPsec ESP-tunnel mode requires a minimum
of 58 bytes of extra headers, including 20 bytes of an outer
IP header and 38 bytes of ESP header, while MONDRIAN
introduces 56 bytes of extra headers (i.e., 20 bytes of an outer
IP header and 36 bytes of AT header) for tunneling. Since both
mechanisms could have additional padding depending on the
size of the original payload, the bandwidth overhead is hardly
distinguishable. In contrast, we notice a significant disparity in
memory requirments. To establish secure channels between m
zones, IPsec requires a total of m2 keys, whereas MONDRIAN
only needs n2 keys where n represents the number of TPs. As
typically m� n, MONDRIAN outperforms IPsec in real-world
networks.

VII. SECURITY ANALYSIS

We analyze the security properties that MONDRIAN pro-
vides, considering the threat model introduced in §III-C. The
attack classes described here are twofold: i) attacks to infiltrate
restricted zones without a proper permission, and ii) disruption
attacks that prevent availability.

A. Infiltration without a Permission

Man-In-The-Middle Attack. To interpose “in the middle”,
an attacker could initiate independent communication channels
with two TPs and relay messages between them. By using
the attacker’s public key for the channel establishment, the
attacker may attempt to generate valid packets to bypass the
TP’s authentication check.

MONDRIAN’s PKI design prevents such MITM attacks. A
MITM attack can succeed only if the attacker convinces each

TP that they are talking to each other. In the process of secure
channel establishment, however, TPs authenticate each other
using the certificates issued by the mutually trusted CA (e.g.,
enterprise). Since the attacker’s public key cannot be certified
by a valid certificate issued by the CA, a MITM will fail.

Packet Replay. Attackers can observe valid MONDRIAN pack-
ets and then attempt to reuse them to transmit attack traffic.
Nevertheless, the validity of the reused packet header will be
lost once the payload is changed—recall that the authentication
scope covers the entire packet including AT and EIP as shown
in Figure 5—and therefore attackers cannot successfully pass
the authentication check at the recipient TP.

Brute-force Attack. Finally, the attacker could attempt to
brute-force the key used for authentication or the MAC. As we
are using 128-bit cryptographic keys and MACs, such attacks
are currently infeasible. To achieve resilience to quantum
computers, the key size would need to be doubled, however.

B. Denial-of-Service Attacks

Exhaustion Attack. In principle, flooding the TP’s authen-
tication process could be an effective attack vector. Attackers
may attempt to forward a large number of packets to the target
TP in order to exhaust the TP’s resources. Even if the attack
packets contain invalid authentication tokens, the TP still needs
to verify these tokens, therefore wasting resources, preventing
legitimate packets from getting through.

To be resilient to such attacks, we suggest operating
multiple TPs at the entry points of cooperative networks.
Multiple TPs enable network operators to load balance and
switch over to another TP in case of a link (or a TP)
failure (see §VIII-D). In fact, many data centers and large
enterprise networks already employ equal-cost multipathing
(ECMP) [65], [25] along with multiple gateways and ToRs
(Top-of-Rack switches) to provide reliable intra-networking
services. In addition, to mitigate possible DoS attacks from
the public Internet, Microsoft implemented a global ECMP
infrastructure [42]. Path-aware networking along with multi-
path communication also enables active switching to different
entry points, if some fail or are under DDoS attack. [11], [66].

VIII. PRACTICAL CONSIDERATIONS

In this section, we discuss some practical considerations
including functional and management aspects, along with
various deployment scenarios describing how MONDRIAN can
be realized on today’s enterprise infrastructure.

11

A. NAT Devices

Multiple hosts connected through a NAT device appear as
a single host to the TP. Internal NAT devices hardly pose a
problem since the hosts under that NAT device are all subject to
the same subnet and therefore belong to a single network zone.
Network operators establish a security policy on the translated
IP address, such that TPs are able to authenticate the zone
transit requests from/to a host under the internal NAT device.

However, an external NAT device located in an external
network, e.g., carrier grade NAT, could affect the TP’s secure
tunneling ability. The translated TP’s IP address would cause
a MAC verification failure—recall that each symmetric key
binds to the triplet including TPs’ IP addresses as described in
§IV-C. This, however, can be addressed by enforcing TPs to
use their public IP addresses to derive the symmetric keys. The
keys are still secure since the first-level key from which the
pairwise keys are derived is exchanged with the CA-certified
public keys. Discovering the translated TP address is also not
a problem thanks to the controller informing senders about the
recipient TP’s address (see, Protocol 3 in Figure 3).

A potential operational failure is where multiple TPs are
behind the same NAT device. This would lead to TPs having
identical keys from the view of remote TPs. One possible
solution would be to use a unique TP identifier instead. Since
all such TPs would be under one administrative domain,
assigning unique TP identifiers upon bootstrapping is feasible.
Then, the TPs convey their identifiers in the AT header field
alongside the destination zone ID. This might slightly increase
the size of the header, but does not degrade the security of the
underlying authentication.

B. Tunneling Granularity

Secure tunneling can be realized in different granularities:
i) site-to-site tunneling, ii) zone-to-zone tunneling, and iii) site-
to-zone tunneling. In the following we motivate our design
choice of site-to-zone tunneling in MONDRIAN.

Similar to IPSec VPN, site-to-site tunneling provides strong
guarantees on communication security and privacy for two
tunnel endpoints. However, from a flexibility and manageabil-
ity standpoint, having a site-to-site tunneling architecture is
not ideal. Every tunnel endpoint needs to share a key with
every other endpoint with which it wishes to exchange data.
This adds state to the endpoints that needs to be updated and
synchronized. Adding a new site requires an update on all the
other sites that wish to communicate with the new site. Then,
yet another layer of security middleboxes (e.g., firewalls) are
required to perform zone transition authentication since keys
are do not designate a specific zone.

An alternative way of providing authentication is to use
one key per zone. In this model, the TP would sign the data
on behalf of the zones. In case of a zone transition, the TP
would perform the transition and then use the key of the
source/receiver zone pair. This approach has the benefit that
sender and receiver are decoupled, as in principle any site
that contains a given zone is able to decrypt data destined
for that zone. Adding a new site would be as easy as fetching
the right keys for the zones used in this site. This process
is independent of all the other sites. However, a receiver TP

needs to be able to fetch the right keys for the zones, which
means the zone transition information must be visible, and
thus an attacker could potentially learn the zone structure of
the observed network. Also, a separate key per zone pair does
not scale well as the number of zones can grow over 1000 in
large networks.

Driven by these considerations, we designed the new
concept of site-to-zone tunneling, which represents a middle
ground combining the advantages of the two approaches, the
notion of secure tunneling and zone transition authentication.
The symmetric keys are distinguishable depending on the des-
tination zone, while at the same time the zone-to-zone security
policies are not being exposed. Thanks to the flexible and
scalable key derivation scheme introduced by PISKES [56], the
key establishment does not expand state, while still providing
unique symmetric keys per zone.

C. Distributed Controllers

To avoid single-point-of-failure, logically centralized
control-planes built on physically distributed instances are
commonly being used. The most common approaches to real-
ize distributed controllers can be broadly categorized into hor-
izontal distribution [5], [41] and hierarchical distribution [23],
[68]. Independent of which distribution architecture is used,
we discuss location, coordination, and migration aspects of
distributed controllers.

Location. The notion of a logically centralized control-plane
offers flexibility in network design and management. A key
design choice is placement of the (distributed) controllers,
which could impact performance, reliability, and management
scalability of a given network. There is comprehensive research
on the controller placement problem considering practical is-
sues from control latency to reliability, from cost-optimization
to load balancing, etc [10], [24], [71]. Among those, we are
mainly interested in the latency performance indicator; that
is the latency between a controller and regional forwarding
devices.

The best latency is achieved when each branch site has its
own controller. By a placement near local TPs, the controller
minimizes the TP-controller latency for the zone transition
authorization protocol, allowing instant feedback for packet
forwarding—we note that inter-controller communication for
global coordination is commonly not latency sensitive. For
the sake of control-plane security, the controller resides in
a restricted zone to which only the local TPs and remote
controllers can access. Although the per-site controller offers
the best performance regarding policy enforcement for the
data-plane, there might be a cost-efficiency problem for a
large-scale network with thousands of branches.

Alternatively, we consider a sparse distribution model, e.g.,
on edge-cloud systems. Similar to today’s cloud services, net-
work operators running geographically distributed data centers
can instantiate multiple controllers at the central point of
regional branches. The control-plane latency overhead would
be relatively high compared to a dense deployment model—if
the data center edges are geographically diverse, the overhead
could be minimized—but, in terms of cost-optimization and
management scalability, this would be a more viable approach.

12

Coordination. It is important to keep consistency across the
distributed controllers. Inconsistency in security policy might
grant hosts with a low security clearance unauthorized access
to restricted zones, resulting in leakage. With this in mind,
we consider a consensus algorithm with strong consistency
guarantees [47], [50], [58], where the security policy is dy-
namically shared/replicated across the distributed controller
instances, ensuring consistent policy enforcement toward the
data-plane devices. There are numerous open-source projects,
such as Consul [9], Apache ZooKeeper [2], and ETCD [17]
available.

TP Migration. To benefit from the distributed controller envi-
ronment, a dynamic controller discovery process also becomes
important. That is, TPs should be able to search a cluster
of best candidates, diagnose the performances in terms of
control latency, and seamlessly migrate to the best controller.
To this end, we consider a two-step migration process: i) TP-
driven control channel initialization, and ii) controller-driven
TP migration.

TPs are responsible for establishing the first control plane
channel with a controller. For example, a new TP (TPnew)
has been configured to contact an initial controller acting
as a first rendezvous point. The initial information contains
the controller’s IP address (C), the corresponding zone ID
(ZC), and the TP’s IP address behind which the controller
resides (TPC). If the controller is located in a remote site
(i.e., TPnew 6= TPC), TPnew should connect with C through
TPC . Otherwise, e.g., C is within the same LAN or in a public
network, TPnew can directly send C a request for control-
plane channel establishment.

Once the TP joined the network, the controller then initiates
a migration process to find the best controller (Cbest) for
TPnew. Upon a migration request broadcast by C, other
controllers measure the possible latency to TPnew and re-
ply back the results. Then, C elects Cbest considering the
latency measurements and the current load balance, and sends
TPnew a RoleChange() request containing Cbest, ZCbest

,
and TPCbest

. Finally, TPnew swaps the best controller by
establishing a new channel with Cbest. The migration process
is also applied when changes in the network are detected.

D. Distributed TPs

Network zoning with a TP may create another single-
point-of-failure. From a reliability perspective, flattening and
connecting all the zones with a TP could potentially eliminate
redundancy for connectivity between zones. From a security
perspective, the centralized TP—instead of several distributed
security middelboxes—is a clearer target for adversaries.

However, both these concerns can be addressed by op-
erating multiple TPs with advanced multipath-enabled layer-
2 protocols (e.g., SPB and TRILL). This network design
provides load balancing and enhanced resilience against a TP
or link failure. If a TP is unable to continue data transmission,
the underlying protocol redirects flows to another TP, ensuring
continuous communication for end hosts [6]. TPs do not keep
state, and therefore the TP conversion can be seamless and no
state migration is required.

For defense in depth, zones can be nested, resulting in a
hierarchical structure. MONDRIAN enables a hierarchical zone

structure by employing nested TPs that are only accessible
from upper-layer TPs, ensuring access control at multiple
levels. In addition, MONDRIAN can coexist with other security
middleboxes: for high-security zones, network operators can
consider positioning additional security solutions behind a TP,
facilitating a multitude of defense options.

E. Nonce Reset

The same nonce must never be used twice with the same
key, otherwise the security of the cipher significantly decreases.
In theory it is easy to create nonces that fulfill this requirement.
One can simply use a counter which is increased for every
invocation of the AEAD algorithm. In real systems this is
not so easy to achieve since machines can crash and lose
their state, specifically their nonce counter. We consider the
following techniques to approach the problem.

• Purely random nonce: All bits of the nonce are used
for randomness. Using this technique the probability
of a nonce clash is very low. Still, there are no
guarantees even if the system does not crash.

• Counter paired with random sequence: This technique
divides the nonce into a counter and a randomized
part. The random part is initialized after every restart
and the counter is increased for every packet that is
sent. After a crash, the counter starts from zero with
the random part being initialized to a new random
value. In case of a nonce clash, all subsequent nonces
clash as well.

• Reset points: This technique uses all bits of the nonce
for a counter and simultaneously defines specific
counter reset points which are stored on non-volatile
memory (NV-memory). The counter is incremented in
memory and the next reset point is written to the NV-
memory once the current reset point is passed. If a
crash occurs, the counter restarts from the latest reset
point.

F. Incremental Deployability

A new networking technology must satisfy the follow-
ing requirements to be incrementally deployable: First, the
new technology should require minimum changes on the
network stack, especially of the end hosts. Except for security-
concerned users, most users are not interested in updating
their system, hampering incremental deployability. Second, it
should provide early adopters an instantaneous incentive, and
third, the incentive should be valid even in partial deployment.
MONDRIAN satisfies these requirements, providing seamless
incremental deployment capabilities. We outline here three
incremental deployment strategies: a gateway deployment, a
middlebox deployment, and software deployment.

Gateway Deployment. We consider a gateway deployment
scenario that does not require changes from end hosts nor
the local network infrastructure. The network operator deploys
MONDRIAN using a gateway, which performs the required
packet authentication and authorization operations. MON-
DRIAN takes a supportive role by complementing already
installed lines of defense such as firewalls, IPS, and IDS. For
instance, traffic can be pre-filtered by TPs before it reaches

13

firewalls located deeper inside the network. This deployment
scenario leaves the enterprise’s network intact while providing
the security properties of MONDRIAN. The simple deployment
already provides early adopters a clear incentive; secure and
strong policy enforcement of zone translation with a flexible
zone migration and dynamic access control.

Middlebox Deployment. MONDRIAN can also be used as a
single, all-in-one solution providing packet filtering, tunneling,
and routing within one middlebox device. We envision the
middlebox to be positioned alongside the routers inside the
network, serving a few hundred hosts. Such a deployment is
especially interesting for small branch sites with much simpler
network layouts. Here, MONDRIAN can drastically reduce the
number of devices that need to be maintained.

Software Deployment. Given that working-from-home be-
comes a new normal in modern society, enterprises should
allow their employees secure access from home to their net-
work. We envision a software-based TP as a viable deployment
option for such home users. Similar to VPN tools, the TP runs
on the user machine and acts as a virtual gateway, performing
secure tunneling and zone translation to interconnect with
information systems in the enterprise network.

IX. RELATED WORK

The majority of literature in network zoning has focused
on security enforcement architecture using middleboxes such
as firewalls, IPS, and IDS. Conventional security middleboxes
define restricted zones and filter unwanted traffic at the entry
points of protected zones [7]. As information systems and the
corresponding network functions get more complicated, the
notion of distributed security systems has been introduced in
the late 1990’s [4]. Early approaches to protect only internal
information systems from external threats have further evolved
to mitigate sophisticated threats, for example insider attacks,
rule tampering, application-level proxies, and denial-of-service
attacks [38]. Later, with emerging network virtualization tech-
nologies and cloud computing environments, virtual firewalls
and collaborative security enforcement kept getting attention
from both academia and the industry [34], [69].

Secure network design with advanced technologies com-
plicates network configuration and management. Notable ef-
forts to simplifying the complexity involve automation tools
enabling “top-down” network provisioning [64], [63]. For
instance, PRESTO [16] constructs a router-native configuration
by using configlets, configuration snippets that encode a high-
level service description into the device-vendor-specific lan-
guage. Later, SDN further simplified the network configuration
and management via logically centralized control and network
programmability [35], [44].

Despite the numerous research efforts, network zoning
with security middleboxes has challenges with respect to
performance—the iMIX throughput degrades by 40 - 75% on
commodity products [29]—and misconfigurations [18], [67],
[70]. With MONDRIAN, we address the challenges by leverag-
ing a cryptography-based policy enforcement and centralized
policy orchestration, achieving scalable, effective, and cost-
efficient network zoning.

Network isolation through network segmentation is another
essential element of network zoning. To logically segment

the physical network, network virtualization technologies are
heavily used in today’s Internet, in particular large enterprise
networks and cloud computing environments. VLAN [28] is
the most frequently used network segmentation technique. It
logically segments a physical LAN into up to 4094 virtual
LANs by tagging the layer 2 header with a unique VLAN
identifier (VID). Later, Virtual eXtensible LAN (VXLAN) [36]
has been introduced for better scalability; it expands the
number of virtual LANs to up to 16 million by leveraging a 24-
bit identifier. SPB [27] and Trill [1], [48] are layer 2 routing
protocols enabling multi-path communication among virtual
LANs within the same physical LAN. Although security is an
important property in network segmentation, unfortunately it
has not been treated as a major concern—without protection
in membership or access control. To isolate each segment, the
use of a large number of security middleboxes is necessary,
thus increasing operational costs and management complexity.

As the closest related work, SVLAN [33] is an archi-
tecture enhancing security in network isolation by enforcing
the receiver’s consent towards incoming traffic. MONDRIAN
provides several significant advantages. First, MONDRIAN
is compatible with various Internet architectures, achieving
practicality and deployability. Second, MONDRIAN provides
enhanced security along with source authenticity, data con-
fidentiality, and data integrity. Lastly, MONDRIAN improves
manageability. The simplified zoning structure, advanced key
establishment system, and centralized policy management sim-
plify the network management.

X. CONCLUSION

Network zoning has long been recognized as the corner-
stone of secure network operation and management. In the
current practice, operators realize network zones with network
segmentation technologies and security middleboxes. As in-
formation systems become more dynamic from a topological,
operational, and functional perspective, however, the conven-
tional network-zoning architectures face new challenges in
terms of scalability and flexibility. In this paper, we have shown
that lightweight policy enforcement for inter-zone communi-
cation is achievable. Following a constructive approach with
a cryptographic foundation, it is possible to create a proactive
alternative to the mostly reactive systems presently used in
network zoning. In conjunction with MONDRIAN, verification
based on firewalls becomes simpler because firewalls would
only process a limited amount of (filtered) traffic. MONDRIAN
consequently reduces the number of management points of
distributed networks while retaining a high degree of security.

ACKNOWLEDGMENT

We would like to thank our shepherd, Patrick Traynor,
and the anonymous reviewers for their insightful feedback
and suggestions. We thank to Markus Legner and Giacomo
Giuliari for helpful discussions that improved this research. We
gratefully acknowledge support from ETH Zurich, and from
the Zurich Information Security and Privacy Center (ZISC).
This work was also supported by Institute of Information
& communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2019-0-
01697, Development of Automated Vulnerability Discovery
Technologies for Blockchain Platform Security).

14

REFERENCES

[1] D. E. 3rd, T. Senevirathne, A. Ghanwani, D. Dutt, and A. Banerjee,
“Transparent Interconnection of Lots of Links (TRILL) Use of IS-IS,”
RFC 7176, IETF, 2014.

[2] Apache ZooKeeper, https://zookeeper.apache.org/.
[3] J. N. Bakker, I. Welch, and W. K. Seah, “Network-wide Virtual Firewall

using SDN/OpenFlow,” in Proceedings of IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN),
2016.

[4] S. M. Bellovin, “Distributed Firewalls,” Login Magazine, Special Issue
on Security, 1999.

[5] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the Workshop on Hot
Topics in Software Defined Networking (HOTSDN), 2014.

[6] Y. Cai, L. Wei, H. Ou, V. Arya, and S. Jethwani, “Protocol Independent
Multicast Equal-Cost Multipath (ECMP) Redirect,” RFC 6754, IETF,
2012.

[7] W. R. Cheswick, S. M. Bellovin, and A. D. Rubin, Firewalls and
Internet security: repelling the wily hacker. Addison-Wesley, 2003.

[8] Cidranger, https://github.com/yl2chen/cidranger.
[9] Consul, https://github.com/hashicorp/consul.

[10] T. Das, V. Sridharan, and M. Gurusamy, “A Survey on Controller Place-
ment in SDN,” IEEE Communications Surveys & Tutorials, vol. 22,
no. 1, pp. 472–503, 2019.

[11] S. Dawkins, “Path Aware Networking: A Bestiary of Roads Not Taken,”
IETF Internet Draft, 2018.

[12] J. Deng, H. Hu, H. Li, Z. Pan, K.-C. Wang, G.-J. Ahn, J. Bi, and Y. Park,
“VNGuard: An NFV/SDN Combination Framework for Provisioning
and Managing Virtual Firewalls,” in Proceedings of IEEE Conference on
Network Function Virtualization and Software Defined Network (NFV-
SDN), 2015.

[13] DPDK Project, “Data Plane Development Kit,” https://dpdk.org.
[14] M. Dworkin, “Recommendation for Block Cipher Modes of Operation:

Galois/Counter Mode (GCM) and GMAC,” NIST Special Publication
800-38D, 2007.

[15] EJBCA, https://svn.cesecore.eu/svn/ejbca/trunk/ejbca/.
[16] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel, A. Greenberg,

S. Rao, and W. Aiello, “Configuration management at massive scale:
System design and experience,” in Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), 2007.

[17] ETCD, https://github.com/etcd-io/etcd.
[18] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “BUZZ: Testing

Context-Dependent Policies in Stateful Networks,” in Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2016.

[19] D. Felsch, M. Grothe, J. Schwenk, A. Czubak, and M. Szymanek, “The
Dangers of Key Reuse: Practical Attacks on IPsec IKE,” in Proceedings
of the USENIX Security Symposium, 2018.

[20] Go 1.14, https://golang.org/doc/go1.14.
[21] A. Gontarczyk, P. McMillan, and C. Pavlovski, “Blueprint for Cyber

Security Zone Modeling,” Information Technology in Industry, vol. 3,
no. 2, pp. 38–45, 2015.

[22] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” RFC
2409, IETF, 1998.

[23] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications,” in Proceedings of
the workshop on Hot Topics in Software Defined Networks (HOTSDN),
2012.

[24] M. He, A. Varasteh, and W. Kellerer, “Toward a Flexible Design of SDN
Dynamic Control Plane: An Online Optimization Approach,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1694–1708, 2019.

[25] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,” RFC
2992 (Informational), IETF, 2000.

[26] IEEE Std., “1363-2000: Ieee standard specifications for public-key
cryptography,” 2000.

[27] IEEE Std., “802.1aq-2012: Local and metropolitan area networks-
shortest path bridging,” 2012.

[28] IEEE Std., “802.1q-2018: Local and metropolitan area networks-bridges
and bridged networks,” 2018.

[29] Juniper, “Security Products Comparison Chart,” https://www.juniper.
net/us/en/local/pdf/datasheets/1000265-en.pdf.

[30] C. Kaufman, “Internet Key Exchange (IKEv2) Protocol,” RFC 4306,
IETF, 2005.

[31] S. Kent, “IP Encapsulating Security Payload (ESP),” RFC 4303, IETF,
2005.

[32] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
RFC 4301, IETF, 2005.

[33] J. Kwon, T. Lee, C. Hähni, and A. Perrig, “SVLAN: Secure & Scalable
Network Virtualization,” in Proceedings of the Symposium on Network
and Distributed System Security (NDSS), 2020.

[34] A. X. Liu and F. Chen, “Collaborative Enforcement of Firewall Policies
in Virtual Private Networks,” in Proceedings of the ACM Symposium
on Principles of Distributed Computing, 2008.

[35] G. Lospoto, M. Rimondini, B. G. Vignoli, and G. Di Battista, “Rethink-
ing virtual private networks in the software-defined era,” in Proceedings
of the IFIP/IEEE International Symposium on Integrated Network
Management (IM), 2015.

[36] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks,” RFC 7348, IETF, 2014.

[37] Q. Mahmoud, Cognitive networks: towards self-aware networks. John
Wiley & Sons, 2007.

[38] T. Markham and C. Payne, “Security at the Network Edge: A Dis-
tributed Firewall Architecture,” in Proceedings of DARPA Information
Survivability Conference and Exposition II. (DISCEX’01), 2001.

[39] D. Maughan, M. Schertler, M. Schneider, and J. Turner, “Internet
Security Association and Key Management Protocol (ISAKMP),” RFC
2408, IETF, 1998.

[40] A. Mayer, A. Wool, and E. Ziskind, “Fang: A Firewall Analysis
Engine,” in Proceedings of IEEE Symposium on Security and Privacy
(S&P), 2000.

[41] J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards
a Model-driven SDN Aontroller Architecture,” in Proceedings of IEEE
International Symposium on a World of Wireless, Mobile and Multime-
dia Networks, 2014.

[42] Microsoft, “Microsoft 365 Denial-of-Service Defense Strategy,”
https://docs.microsoft.com/en-us/office365/enterprise/office-365-
microsoft-dos-defense-strategy.

[43] A. Morton, “IMIX Genome: Specification of Variable Packet Sizes for
Additional Testing,” RFC 6985, IETF, 2013.

[44] M. Mousa, A. M. Bahaa-Eldin, and M. A. Sobh, “Autonomic man-
agement of mpls backbone networks using sdns,” in Proceedings of
the International Conference on Computer Engineering and Systems
(ICCES), 2017.

[45] L. Obregon, “Infrastructure Security Architecture for Effective Security
Monitoring,” SANS Institute, vol. 2, 2015.

[46] OpenXPKI, https://github.com/openxpki/openxpki/.
[47] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “Cap for

Networks,” in Proceedings of the ACM Workshop on Hot Topics in
Software Defined Networking (HotSDN), 2013.

[48] R. Perlman, D. E. 3rd, D. Dutt, S. Gai, and A. Ghanwani, “Routing
Bridges (RBridges): Base Protocol Specification,” RFC 6325, IETF,
2011.

[49] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat, SCION: A
Secure Internet Architecture. Springer Verlag, 2017.

[50] K. Phemius, M. Bouet, and J. Leguay, “Disco: Distributed Multi-domain
SDN Controllers,” in Proceedings of the IEEE Network Operations and
Management Symposium (NOMS), 2014.

[51] PISKES Implementation, https://github.com/netsec-ethz/scion/tree/
scionlab/go/lib/drkey.

[52] Prototype Implementation, https://github.com/chaehni/scion/tree/
zoning/go/sig.

15

https://zookeeper.apache.org/
https://github.com/yl2chen/cidranger
https://github.com/hashicorp/consul
https://dpdk.org
https://svn.cesecore.eu/svn/ejbca/trunk/ejbca/
https://github.com/etcd-io/etcd
https://golang.org/doc/go1.14
https://www.juniper.net/us/en/local/pdf/datasheets/1000265-en.pdf
https://www.juniper.net/us/en/local/pdf/datasheets/1000265-en.pdf
https://docs.microsoft.com/en-us/office365/enterprise/office-365-microsoft-dos-defense-strategy
https://docs.microsoft.com/en-us/office365/enterprise/office-365-microsoft-dos-defense-strategy
https://github.com/openxpki/openxpki/
https://github.com/netsec-ethz/scion/tree/scionlab/go/lib/drkey
https://github.com/netsec-ethz/scion/tree/scionlab/go/lib/drkey
https://github.com/chaehni/scion/tree/zoning/go/sig
https://github.com/chaehni/scion/tree/zoning/go/sig

[53] Y. Qi, B. Yang, B. Xu, and J. Li, “Towards System-level Optimization
for High Performance Unified Threat Management,” in Proceedings of
the International Conference on Networking and Services (ICNS), 2007.

[54] H. V. Ramasamy, C.-L. Tsao, B. Pfitzmann, N. Joukov, and J. W. Mur-
ray, “Towards Automated Identification of Security Zone Classification
in Enterprise Networks,” in Hot-ICE, 2011.

[55] E. Rescorla, “The transport Layer Security (TLS) Protocol Version 1.3,”
RFC 8446, IETF, 2018.

[56] B. Rothenberger, D. Roos, M. Legner, and A. Perrig, “PISKES:
Pragmatic Internet-Scale Key-Establishment System,” in Proceedings of
the ACM Asia Conference on Computer and Communications Security
(ASIACCS), 2020.

[57] S. Gueron, Intel R© Advanced Encryption Standard (AES) New Instruc-
tions Set. White Paper, 2012.

[58] X. Shi, H. Lin, H. Jin, B. B. Zhou, Z. Yin, S. Di, and S. Wu, “GIRAFFE:
A Scalable Distributed Coordination Service for Large-scale Systems,”
in Proceedings of IEEE International Conference on Cluster Computing
(CLUSTER), 2014.

[59] SIG (Scion-IP Gateway), https://github.com/scionproto/scion/tree/
master/go/posix-gateway.

[60] Spirent, IMIX (Internet Mix) Journal. Test Methodology Journal, 2006.
[61] SQLite 3.32.0, https://www.sqlite.org/releaselog/3_32_0.html.
[62] Statista, “Leading banks in the United States in 2019, by num-

ber of branches,” https://www.statista.com/statistics/935643/banks-
with-the-most-branches-usa/.

[63] X. Sun, Y. Sung, S. D. Krothapalli, and S. G. Rao, “A systematic
approach for evolving vlan designs,” in Proceedings of the Annual IEEE
Conference on Computer Communications (INFOCOM), 2010.

[64] Y. Sung, S. G. Rao, G. G. Xie, and D. A. Maltz, “Towards systematic
design of enterprise networks,” in Proceedings of the ACM CoNEXT,
2008.

[65] D. Thaler and C. Hopps, “Multipath Issues in Unicast and Multicast
Next-Hop Selection,” RFC 2991 (Informational), IETF, 2000.

[66] B. Trammell, J. Smith, and A. Perrig, “Adding Path Awareness to the
Internet Architecture,” IEEE Internet Computing, vol. 22, no. 2, 2018.

[67] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and J.-M. Kang,
“SFC-Checker: Checking the Correct Forwarding Behavior of Service
Function Chaining,” in Proceedings of IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN),
2016.

[68] K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Holliman, G. Baldus,
M. Hines, T. Kim, A. Narayanan, A. Jain et al., “Taking the Edge
off with Espresso: Scale, Reliability and Programmability for Flobal
Internet Peering,” in Proceedings of the ACM SIGCOMM, 2017.

[69] T. Yu, S. K. Fayaz, M. P. Collins, V. Sekar, and S. Seshan, “PSI: Precise
Security Instrumentation for Enterprise Networks,” in Proceedings of
the Symposium on Network and Distributed System Security (NDSS),
2017.

[70] Y. Yuan, S. Moon, S. Uppal, L. Jia, and V. Sekar, “NetSMC: A
Custom Symbolic Model Checker for Stateful Network Verification,” in
Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2020.

[71] T. Zhang, P. Giaccone, A. Bianco, and S. De Domenico, “The Role
of the Inter-controller Consensus in the Placement of Distributed SDN
Controllers,” Computer Communications, vol. 113, pp. 1–13, 2017.

APPENDIX A
PACKET METADATA

t y p e P a c k e t s t r u c t {
I n g r e s s boo l
S rcHos t n e t . IP
Ds tHos t n e t . IP
RemoteTP s t r i n g
DstZone u i n t 3 2
RawPacket common . RawBytes

}

The packet metadata is the abstract object passed between
modules, describing an IP packet. It accumulates information
about the raw IP packet (RawPacket). The Ingress field
identifies a packet as either an ingress packet, coming from the
WAN, or an egress packet that originated in the local network.
SrcHost and DstHost reflect the source and destination
IP addresses of the packet. RemoteTP designates the remote
TP. For an ingress packet that is the source TP from which
the packet was received, for an egress packet it is the TP to
which the packet needs to be forwarded to. DstZone is the
Zone ID of the zone to which DstHost belongs.

APPENDIX B
CONTROLLER DATABASE

CREATE TABLE Zones (
i d INTEGER NOT NULL,
name TEXT,
PRIMARY KEY(i d)
) ;

CREATE TABLE S i t e s (
t p _ a d d r e s s TEXT NOT NULL,
name TEXT,
PRIMARY KEY(t p _ a d d r e s s)
) ;

CREATE TABLE S u b n e t s (
n e t _ i p BLOB NOT NULL,
net_mask BLOB NOT NULL,
zone INTEGER NOT NULL,
t p _ a d d r e s s TEXT NOT NULL,
PRIMARY KEY (n e t _ i p , ne t_mask) ,
FOREIGN KEY (zone) REFERENCES Zones (i d) ON DELETE CASCADE,
FOREIGN KEY (t p _ a d d r e s s) REFERENCES S i t e s (t p _ a d d r e s s) ON DELETE CASCADE
) ;

CREATE TABLE T r a n s i t i o n s (
s r c INTEGER NOT NULL,
d e s t INTEGER NOT NULL,
PRIMARY KEY (s r c , d e s t) ON CONFLICT REPLACE,
FOREIGN KEY (s r c) REFERENCES Zones (i d) ON DELETE CASCADE,
FOREIGN KEY (d e s t) REFERENCES Zones (i d) ON DELETE CASCADE
)

The controller database consists of 4 tables: Zones,
Sites, Subnets, and Transitions. The Zones table
contains all network zones known to the controller, identified
by zone IDs. Additionally, a human readable description is
attached. The Sites table holds all known branch sites with
the addresses of the corresponding TPs and a textual descrip-
tion. The Subnets table describes the configured IP subnets
together with their zone membership and the TP behind which
they are located. Finally, the Transitions table reflects the
zone transition matrix of allowed zone transitions.

16

https://github.com/scionproto/scion/tree/master/go/posix-gateway
https://github.com/scionproto/scion/tree/master/go/posix-gateway
https://www.sqlite.org/releaselog/3_32_0.html
https://www.statista.com/statistics/935643/banks-with-the-most-branches-usa/
https://www.statista.com/statistics/935643/banks-with-the-most-branches-usa/

	Introduction
	Network Zoning
	Case Study
	Challenges

	Overview
	Design Principles
	Mondrian Overview
	Threat Model
	Assumptions

	Architecture
	Mondrian Bootstrapping
	Protocol Description
	Key Management

	Implementation
	Translation Point
	Controller
	Authentication Token

	Evaluation
	System Benchmarks
	Network Benchmarks
	Comparison to the Current Practice

	Security Analysis
	Infiltration without a Permission
	Denial-of-Service Attacks

	Practical Considerations
	NAT Devices
	Tunneling Granularity
	Distributed Controllers
	Distributed TPs
	Nonce Reset
	Incremental Deployability

	Related Work
	Conclusion
	References
	Appendix A: Packet Metadata
	Appendix B: Controller Database

